Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,35 @@
|
|
1 |
-
import
|
2 |
import openai
|
3 |
import json
|
4 |
import os
|
5 |
import pandas as pd
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
sys.path.append(current_dir)
|
10 |
|
11 |
# μ±μ·¨κΈ°μ€ λ°μ΄ν° κ°μ Έμ€κΈ°
|
12 |
import achievement_standards as data
|
13 |
achievement_standards = data.achievement_standards
|
14 |
|
15 |
-
# OpenAI API μ€μ (νκ²½ λ³μμμ μ½μ΄μ΄)
|
16 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
17 |
-
|
18 |
# gptμ΄μ©ν΄μ μΆλ‘ ν¨μ λ§λ€κΈ°
|
19 |
def generate_annotated_text(text):
|
20 |
response = openai.ChatCompletion.create(
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
)
|
38 |
return response['choices'][0]['message']['content']
|
39 |
|
@@ -60,59 +56,70 @@ def generate_similar_sentences(base_sentence):
|
|
60 |
generated_sentences = response.choices[0].message['content'].split('\n')
|
61 |
return [sentence.strip() for sentence in generated_sentences if sentence.strip()]
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
sentences = [line[start_idx + 2:line.find('",', start_idx)].strip() for line in result_lines if (start_idx := line.find('("')) != -1]
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
return '<br>'.join(similar_sentences)
|
105 |
-
|
106 |
-
def save_evaluations_to_csv(evaluations):
|
107 |
-
df = pd.DataFrame(evaluations, columns=["Evaluation"])
|
108 |
-
file_path = "/mnt/data/evaluations.csv"
|
109 |
-
df.to_csv(file_path, index=False)
|
110 |
-
return file_path
|
111 |
-
|
112 |
-
selected_sentence = gr.Textbox(visible=False)
|
113 |
-
|
114 |
-
generate_button.click(fn=generate_and_save_evaluation, inputs=[grade_group, subject, standard], outputs=[result_output, download_link])
|
115 |
-
similar_sentence_button.click(fn=update_similar_sentences, inputs=selected_sentence, outputs=similar_sentences_output)
|
116 |
-
save_button.click(fn=save_evaluations_to_csv, inputs=result_output, outputs=download_link)
|
117 |
-
|
118 |
-
demo.launch()
|
|
|
1 |
+
import streamlit as st
|
2 |
import openai
|
3 |
import json
|
4 |
import os
|
5 |
import pandas as pd
|
6 |
|
7 |
+
# OpenAI API μ€μ (νκ²½ λ³μμμ μ½μ΄μ΄)
|
8 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
9 |
|
10 |
# μ±μ·¨κΈ°μ€ λ°μ΄ν° κ°μ Έμ€κΈ°
|
11 |
import achievement_standards as data
|
12 |
achievement_standards = data.achievement_standards
|
13 |
|
|
|
|
|
|
|
14 |
# gptμ΄μ©ν΄μ μΆλ‘ ν¨μ λ§λ€κΈ°
|
15 |
def generate_annotated_text(text):
|
16 |
response = openai.ChatCompletion.create(
|
17 |
+
model="gpt-3.5-turbo-16k",
|
18 |
+
messages=[
|
19 |
+
{
|
20 |
+
"role": "system",
|
21 |
+
"content": "μ±μ·¨κΈ°μ€ κΈ°λ° νμμ νΉμ± λ° νλ νκ° μμ±\nμ±μ·¨κΈ°μ€μ μ
λ ₯νμλ©΄, ν΄λΉ μ±μ·¨κΈ°μ€μ κΈ°λ°ν νμμ νΉμ± λ° νλμ λν νκ°λ₯Ό annotated_text νμμΌλ‘ μ 곡ν©λλ€. μ±μ·¨κΈ°μ€μ 보며 νμμ νΉμ νλ, μ±μ·¨ μμ€, κ΅μ¬μ μ΄ν, κ·Έλ¦¬κ³ νμμ μλμ κ³ λ €νμ¬ μ²΄κ³μ μΌλ‘ ꡬμ±λ μΆλ ₯μ μ 곡ν©λλ€. μ£Όμ΄λ λ°λμ μλ΅ν©λλ€. \n\nμμ :\nμ
λ ₯: ```μ±μ·¨κΈ°μ€: [6κ΅01-07]μλκ° μ²ν μν©μ μ΄ν΄νκ³ κ³΅κ°νλ©° λ£λ νλλ₯Ό μ§λλ€, [6κ΅01-02] μ견μ μ μνκ³ ν¨κ» μ‘°μ νλ©° ν μνλ€.```\nμΆλ ₯: ```annotated_text(\n (\"νμ μμ μ μκ°μ μΌλͺ©μμ°νκ² μ 리νλ μ΅κ΄μ΄ μμ.\", \"μλ\", \"rgba(255, 0, 0, 0.3)\"),\n (\"μ¬ν νμμ κ΄ν μ£Όμ₯νλ κΈμ°κΈ°λ₯Ό μν¨.\", \"μ±μ·¨μμ€\", \"rgba(0, 0, 255, 0.3)\"),\n (\"μΉκ΅¬μ κ³ λ―Όμ ν΄κ²°ν΄μ£Όλ μν κ·Ήμμ μλλ°©μ λ°°λ €νμ¬ ν΄κ²° κ°λ₯ν λ°©μμ μ μν¨.\", \"μν\", \"rgba(0, 128, 0, 0.3)\"),\n (\"μλκ° μ²ν μν©μ μ΄ν΄νκ³ κ³΅κ°νλ νλλ₯Ό κ°μ§κ³ μΉκ΅¬λ€κ³Ό μλ§ν κ΄κ³λ₯Ό λ§Ίκ³ κ°λ±μ μ‘°μ ν¨.\", \"κ΅μ¬μ΄ν\", \"rgba(128, 128, 128, 0.3)\"),\n (\"μ€κ° λμ΄ μκ°μ μ΄λμ₯μ μ¬μ©νλ λ°©λ² μ νκΈ°λ₯Ό μ£Όμ λ‘ ν ν μμμ μλ§μ κ·Όκ±°μ λ·λ°μΉ¨ν μ μλ μλ£λ₯Ό ν λλ‘ μμ μ μ견μ νλΉνκ² μ μνλ©΄μ λ€λ₯Έ μ¬λμ μ견μ λ₯λμ μΌλ‘ μμ©νκ³ ν¨κ³Όμ μΌλ‘ μ견μ μ‘°μ νλ λ₯λ ₯μ 보μ.\", \"μν\", \"rgba(0, 128, 0, 0.3)\"),\n (\"μλμ μ견μ μ‘΄μ€νκ³ νλ ₯νλ νλλ₯Ό 보μ.\", \"μλ\", \"rgba(255, 0, 0, 0.3)\")\n)\n```"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"role": "user",
|
25 |
+
"content": text
|
26 |
+
}
|
27 |
+
],
|
28 |
+
temperature=1,
|
29 |
+
max_tokens=10000,
|
30 |
+
top_p=1,
|
31 |
+
frequency_penalty=0,
|
32 |
+
presence_penalty=0
|
33 |
)
|
34 |
return response['choices'][0]['message']['content']
|
35 |
|
|
|
56 |
generated_sentences = response.choices[0].message['content'].split('\n')
|
57 |
return [sentence.strip() for sentence in generated_sentences if sentence.strip()]
|
58 |
|
59 |
+
# Streamlit μ±μ μ λͺ© λ° μ€λͺ
|
60 |
+
st.title("μ±μ·¨κΈ°μ€ κΈ°λ° νμμ νΉμ± λ° νλ νκ° μμ±")
|
61 |
+
st.write("μ±μ·¨κΈ°μ€μ μ
λ ₯νμλ©΄, ν΄λΉ μ±μ·¨κΈ°μ€μ κΈ°λ°ν νμμ νΉμ± λ° νλμ λν νκ°λ₯Ό [νμ νλ, μ±μ·¨ μμ€, κ΅μ¬μ μ΄ν, νμ μλ] 4κ°μ§ μμλ₯Ό μ‘°ν©νμ¬ μ 곡ν©λλ€.")
|
62 |
+
|
63 |
+
# νλ
κ΅° μ ν λλ‘λ€μ΄
|
64 |
+
grade_group = st.selectbox("νλ
κ΅°μ μ ννμΈμ:", list(achievement_standards.keys()))
|
65 |
+
|
66 |
+
# μ νλ νλ
κ΅°μ λ°λ₯Έ κ³Όλͺ© λͺ©λ‘
|
67 |
+
subject_list = list(achievement_standards[grade_group].keys())
|
68 |
+
subject = st.selectbox("κ³Όλͺ©μ μ ννμΈμ:", subject_list)
|
69 |
|
70 |
+
# μ νλ κ³Όλͺ©μ λ°λ₯Έ μ±μ·¨κΈ°μ€ λͺ©λ‘
|
71 |
+
selected_standards = achievement_standards[grade_group][subject]
|
72 |
+
selected_standard = st.selectbox("μ±μ·¨κΈ°μ€μ μ ννμΈμ:", selected_standards)
|
73 |
|
74 |
+
# μ νλ μ±μ·¨κΈ°μ€μ ν
μ€νΈ μ
λ ₯μ°½μ κΈ°λ³Έκ°μΌλ‘ μ¬μ©
|
75 |
+
achievement_standard = st.text_input("μ±μ·¨κΈ°μ€ μ
λ ₯:", value=selected_standard)
|
76 |
|
77 |
+
# μΈμ
μν μ΄κΈ°ν
|
78 |
+
if 'generated_result' not in st.session_state:
|
79 |
+
st.session_state.generated_result = None
|
80 |
+
if 'selected_sentence' not in st.session_state:
|
81 |
+
st.session_state.selected_sentence = None
|
82 |
+
if 'similar_sentences' not in st.session_state:
|
83 |
+
st.session_state.similar_sentences = []
|
84 |
+
|
85 |
+
# "νκ° μμ±" λ²νΌ ν΄λ¦ μμ λμ
|
86 |
+
if st.button("νκ° μμ±"):
|
87 |
+
with st.spinner('λ΅λ³ μμ±μ€...'):
|
88 |
+
result = generate_annotated_text(achievement_standard)
|
89 |
+
st.session_state.generated_result = result
|
90 |
+
st.session_state.selected_sentence = None # μλ‘μ΄ νκ° μμ±μ μ νλ λ¬Έμ₯ μ΄κΈ°ν
|
91 |
+
st.session_state.similar_sentences = [] # μ΄μ μ μ¬ν λ¬Έμ₯λ€ μ΄κΈ°ν
|
92 |
+
exec(result.replace('```', ''))
|
93 |
+
|
94 |
+
# μ
λ νΈ λ°μ€ λ° μ μ¬ν λ¬Έμ₯ μμ± λ²νΌ μΆκ°
|
95 |
+
if st.session_state.generated_result:
|
96 |
+
# annotated_text κ²°κ³Όμμ λ¬Έμ₯λ§ μΆμΆ
|
97 |
+
result_lines = st.session_state.generated_result.split('\n')
|
98 |
sentences = [line[start_idx + 2:line.find('",', start_idx)].strip() for line in result_lines if (start_idx := line.find('("')) != -1]
|
99 |
+
|
100 |
+
if sentences:
|
101 |
+
selected_sentence = st.selectbox("λ¬Έμ₯μ μ ννμΈμ:", sentences, key="sentence_select")
|
102 |
+
st.session_state.selected_sentence = selected_sentence
|
103 |
+
|
104 |
+
# μ μ¬ν λ¬Έμ₯ μμ± λ²νΌ
|
105 |
+
if st.button("μ μ¬ν 문ꡬ μμ±") and st.session_state.selected_sentence:
|
106 |
+
with st.spinner('λ¬Έμ₯ μμ±μ€...'):
|
107 |
+
st.session_state.similar_sentences = generate_similar_sentences(st.session_state.selected_sentence)
|
108 |
+
|
109 |
+
# μ μ¬ν λ¬Έμ₯λ€ μΆλ ₯
|
110 |
+
for sentence in st.session_state.similar_sentences:
|
111 |
+
st.write(sentence)
|
112 |
+
|
113 |
+
# CSV μ μ₯ λ²νΌ μΆκ°
|
114 |
+
if st.session_state.similar_sentences:
|
115 |
+
if st.button("CSVλ‘ μ μ₯"):
|
116 |
+
df = pd.DataFrame(st.session_state.similar_sentences, columns=["Evaluation"])
|
117 |
+
df.to_csv("evaluations.csv", index=False)
|
118 |
+
st.success("CSV νμΌμ΄ μ μ₯λμμ΅λλ€.")
|
119 |
+
with open("evaluations.csv", "rb") as file:
|
120 |
+
btn = st.download_button(
|
121 |
+
label="CSV λ€μ΄λ‘λ",
|
122 |
+
data=file,
|
123 |
+
file_name="evaluations.csv",
|
124 |
+
mime="text/csv"
|
125 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|