File size: 3,812 Bytes
1cdf151 0623bf4 523d629 98a282f 8df1ce2 523d629 f048acf 98a282f b547839 4db9c39 8df1ce2 523d629 8df1ce2 523d629 8df1ce2 523d629 344f733 8df1ce2 0623bf4 784ad1e 8df1ce2 4547d40 e0dcefb ad86af3 36ec8a8 1714c84 0623bf4 8df1ce2 2994917 0623bf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
title: README
emoji: π
colorFrom: purple
colorTo: red
sdk: static
pinned: false
---
# Welcome to ConFit on Huggingface Hub
## About Us
ConFit is a pioneering organisation dedicated to advancing the fields of speech and language processing, audio and sound processing, and natural language processing (NLP). Our team is committed to developing state-of-the-art technologies and tools that empower researchers and developers in the audio and language domains. We provide a rich collection of audio datasets specifically designed for various machine learning applications. These datasets are perfect for training models on tasks such as audio embedding, speech recognition, and more. Our datasets are compatible with popular frameworks and can be seamlessly integrated into your projects.
## Datasets
Audio classification:
| Dataset | Split Method | Classes | Task | # Clips | Average Duration | Sampling Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WMMS | train/test | 31 | Multi-class | 1695 | 10.42 | 16000 |
| MSWC (English) | train/validation/test | 271 | Multi-class | 33726 | 0.99 | 16000 |
| MSWC (Spanish) | train/validation/test | 146 | Multi-class | 11759 | 0.99 | 16000 |
| MSWC (Indian) | train/validation/test | 14 | Multi-class | 739 | 0.99 | 16000 |
| ESC50 | 5-fold | 50 | Multi-class | 2000 | 5.00 | 44100 |
| UrbanSound8K | 10-fold | 10 | Multi-class | 8732 | 3.60 | 8000 |
| AudioSet (balanced, 20k) | train/test | 527 | Multi-label | 39,436 | 9.89 | 32000 |
| AudioSet (balanced, 500k) | train/test | 527 | Multi-label | 516,868 | | 32000 |
| AudioSet (unbalanced, 2m) | train/test | 527 | Multi-label | 1,930,910 | 9.91 | 32000 |
| MagnaTagATune | train/validation/test | 50 | Multi-label | 21108 | 29.12 | 16000 |
| Medley-solos-DB | train/validation/test | 8 | Multi-class | 21571 | 2.97 | 44100 |
| Pianos | train/validation/test | 8 | Multi-class | 668 | 4.86 | 16000 |
| FSD-Kaggle-2019 (curated) | train/test | 80 | Multi-label | 9451 | 8.93 | 44100 |
| GTZAN | train/validation/test | 10 | Multi-class | 930 | 30.02 | 22050 |
| Nsynth (instrument) | train/validation/test | 11 | Multi-class | 305979 | 4.00 | 16000 |
| Nsynth (pitch) | train/validation/test | 112 | Multi-class | 305979 | 4.00 | 16000 |
| CREMA-D | train/validation/test | 6 | Multi-class | 7442 | 2.54 | 16000 |
| IEMOCAP | 5-fold | 4 | Multi-class | 5531 | 4.52 | 16000 |
| EmoDB | train/test | 7 | Multi-class | 535 | 2.77 | 16000 |
| EMOVO | 6-fold | 7 | Multi-class | 588 | 3.12 | 48000 |
| IRMAS | train/test | 11 | Multi-label | 9579 | 7.16 | 44100 |
| RAVDESS | 5-fold | 8 | Multi-class | 2880 | 3.70 | 48000 |
| DCASE2018-Task3 | train/test | 2 | Binary-class | 35690 | 10.01 | 44100 |
| TIMIT | train/validation/test | 630 | Multi-class | 6300 | 3.07 | 16000 |
| LibriSpeech | train/test | 2484 | Multi-class | 21933 | 3.75 | 16000 |
Automated audio captioning:
| Dataset | Split Method | # Clips | Average Duration | Sampling Rate |
| :---: | :---: | :---: | :---: | :---: |
| Music4All | train | 109269 | 29.99 | 48000 |
| Clotho (v1.0) | train/test | 3938 | 22.43 | 44100 |
| Clotho (v2.1) | train/validation/test | 8723 | 22.48 | 44100 |
| AudioCaps | train/validation/test | 41113 | 8.38 | 48000 |
| WavCaps (AudioSet-SL) | train | 85232 | 10.00 | 32000 |
| WavCaps (SoundBible) | train | 1232 | 13.12 | 32000 |
| WavCaps (BBC) | train | 31201 | 115.04 | 32000 |
Music, speech, and noise:
| Dataset | Split Method | # Clips | Average Duration | Sampling Rate |
| :---: | :---: | :---: | :---: | :---: |
| MUSAN | train | 2016 | 195.16 | 16000 |
| RIR-Noise | train | 61260 | 1.54 | 16000 |
| ARCA23K | train | 17979 | 7.92 | 44100 |
## Contact Us
If you have any questions or would like more information about our projects, please feel free to reach out to us.
|