Update app.py
Browse files
app.py
CHANGED
@@ -12,37 +12,34 @@ dataset_iter = load_dataset(
|
|
12 |
).shuffle(seed=42) # Shuffle added
|
13 |
|
14 |
# Load the model
|
15 |
-
model = GLiNER.from_pretrained("
|
16 |
|
17 |
-
def ner(text: str, labels: str, threshold: float):
|
18 |
# Convert user-provided labels (comma-separated string) into a list
|
19 |
labels_list = [label.strip() for label in labels.split(",")]
|
20 |
|
21 |
-
# Predict entities using the
|
22 |
-
entities = model.predict_entities(text, labels_list, flat_ner=
|
23 |
|
24 |
-
# Prepare
|
25 |
-
|
26 |
-
for ent in sorted(entities, key=lambda x: x['start'], reverse=True):
|
27 |
-
highlighted_text = (
|
28 |
-
highlighted_text[:ent['start']] +
|
29 |
-
f"<span style='background-color: yellow; font-weight: bold;'>{highlighted_text[ent['start']:ent['end']]}</span>" +
|
30 |
-
highlighted_text[ent['end']:]
|
31 |
-
)
|
32 |
|
33 |
-
return
|
|
|
|
|
|
|
34 |
|
35 |
-
with gr.Blocks(title="General NER
|
36 |
gr.Markdown(
|
37 |
"""
|
38 |
# General Entity Recognition Demo
|
39 |
-
This demo selects a random text snippet from a subset of the British Library's books dataset and identifies entities using
|
40 |
"""
|
41 |
)
|
42 |
|
43 |
# Display a random example
|
44 |
input_text = gr.Textbox(
|
45 |
-
value="
|
46 |
label="Text input",
|
47 |
placeholder="Enter your text here",
|
48 |
lines=5
|
@@ -50,7 +47,7 @@ with gr.Blocks(title="General NER Demo") as demo:
|
|
50 |
|
51 |
with gr.Row() as row:
|
52 |
labels = gr.Textbox(
|
53 |
-
value="
|
54 |
label="Labels",
|
55 |
placeholder="Enter your labels here (comma separated)",
|
56 |
scale=2,
|
@@ -64,9 +61,14 @@ with gr.Blocks(title="General NER Demo") as demo:
|
|
64 |
info="Lower the threshold to increase how many entities get predicted.",
|
65 |
scale=1,
|
66 |
)
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
# Define output components
|
69 |
-
output_highlighted = gr.
|
70 |
output_entities = gr.JSON(label="Entities")
|
71 |
|
72 |
submit_btn = gr.Button("Find Entities!")
|
@@ -84,8 +86,8 @@ with gr.Blocks(title="General NER Demo") as demo:
|
|
84 |
|
85 |
# Connect submit button
|
86 |
submit_btn.click(
|
87 |
-
fn=
|
88 |
-
inputs=[input_text, labels, threshold],
|
89 |
outputs=[output_highlighted, output_entities]
|
90 |
)
|
91 |
|
|
|
12 |
).shuffle(seed=42) # Shuffle added
|
13 |
|
14 |
# Load the model
|
15 |
+
model = GLiNER.from_pretrained("urchade/gliner_multi-v2.1", trust_remote_code=True)
|
16 |
|
17 |
+
def ner(text: str, labels: str, threshold: float, nested_ner: bool):
|
18 |
# Convert user-provided labels (comma-separated string) into a list
|
19 |
labels_list = [label.strip() for label in labels.split(",")]
|
20 |
|
21 |
+
# Predict entities using the GLiNER model
|
22 |
+
entities = model.predict_entities(text, labels_list, flat_ner=not nested_ner, threshold=threshold)
|
23 |
|
24 |
+
# Prepare entities for color-coded display using gr.HighlightedText
|
25 |
+
highlights = [(ent["start"], ent["end"], ent["label"]) for ent in entities]
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
return {
|
28 |
+
"text": text,
|
29 |
+
"entities": highlights
|
30 |
+
}
|
31 |
|
32 |
+
with gr.Blocks(title="General NER with Color-Coded Output") as demo:
|
33 |
gr.Markdown(
|
34 |
"""
|
35 |
# General Entity Recognition Demo
|
36 |
+
This demo selects a random text snippet from a subset of the British Library's books dataset and identifies entities using the GLiNER NER model. You can specify the entities you want to find, and results will be displayed in a color-coded format.
|
37 |
"""
|
38 |
)
|
39 |
|
40 |
# Display a random example
|
41 |
input_text = gr.Textbox(
|
42 |
+
value="Click 'Get New Snippet' to load a random sample from the British Library Dataset",
|
43 |
label="Text input",
|
44 |
placeholder="Enter your text here",
|
45 |
lines=5
|
|
|
47 |
|
48 |
with gr.Row() as row:
|
49 |
labels = gr.Textbox(
|
50 |
+
value="Places, People", # Default example labels
|
51 |
label="Labels",
|
52 |
placeholder="Enter your labels here (comma separated)",
|
53 |
scale=2,
|
|
|
61 |
info="Lower the threshold to increase how many entities get predicted.",
|
62 |
scale=1,
|
63 |
)
|
64 |
+
nested_ner = gr.Checkbox(
|
65 |
+
value=False,
|
66 |
+
label="Nested NER",
|
67 |
+
info="Enable Nested NER?",
|
68 |
+
)
|
69 |
|
70 |
+
# Define output components using HighlightedText for color-coded display
|
71 |
+
output_highlighted = gr.HighlightedText(label="Predicted Entities")
|
72 |
output_entities = gr.JSON(label="Entities")
|
73 |
|
74 |
submit_btn = gr.Button("Find Entities!")
|
|
|
86 |
|
87 |
# Connect submit button
|
88 |
submit_btn.click(
|
89 |
+
fn=ner,
|
90 |
+
inputs=[input_text, labels, threshold, nested_ner],
|
91 |
outputs=[output_highlighted, output_entities]
|
92 |
)
|
93 |
|