File size: 11,092 Bytes
b044427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca64815
 
 
 
 
 
 
 
 
 
b044427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca64815
 
b044427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee8caf
d1730b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
import sys
# sys.path.append('./inference/')
import bmtools
from bmtools.agent.tools_controller import MTQuestionAnswerer, load_valid_tools
from bmtools.agent.singletool import STQuestionAnswerer
from langchain.schema import AgentFinish
import os
import requests
from threading import Thread
from multiprocessing import Process
import time

available_models = ["ChatGPT", "GPT-3.5"]
DEFAULTMODEL = "GPT-3.5"

tools_mappings = {
    "klarna": "https://www.klarna.com/",
    "chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
    "wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
    "weather": "http://127.0.0.1:8079/tools/weather/",
    "douban-film": "http://127.0.0.1:8079/tools/douban-film/",
    "wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
    "office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
    "bing_search": "http://127.0.0.1:8079/tools/bing_search/",
    "map": "http://127.0.0.1:8079/tools/map/",
    "stock": "http://127.0.0.1:8079/tools/stock/",
    "baidu-translation": "http://127.0.0.1:8079/tools/baidu-translation/",
    "nllb-translation": "http://127.0.0.1:8079/tools/nllb-translation/",
}

valid_tools_info = {}
all_tools_list = []

gr.close_all()

MAX_TURNS = 30
MAX_BOXES = MAX_TURNS * 2

return_msg = []
chat_history = ""

tool_server_flag = False

def run_tool_server():
    def run_server():
        server = bmtools.ToolServer()
        # server.load_tool("chemical-prop")
        server.load_tool("douban-film")
        # server.load_tool("weather")
        # server.load_tool("wikipedia")
        # server.load_tool("wolframalpha")
        # server.load_tool("bing_search")
        # server.load_tool("office-ppt")
        # server.load_tool("stock")
        # server.load_tool("map")
        # server.load_tool("nllb-translation")
        # server.load_tool("baidu-translation")
        # server.load_tool("tutorial")
        server.serve()
    # server = Thread(target=run_server)
    server = Process(target=run_server)
    server.start()
    global tool_server_flag
    tool_server_flag = True

def load_tools():
    global valid_tools_info
    global all_tools_list
    valid_tools_info = load_valid_tools(tools_mappings)
    all_tools_list = sorted(list(valid_tools_info.keys()))
    return gr.update(choices=all_tools_list)

def set_environ(OPENAI_API_KEY: str,

                WOLFRAMALPH_APP_ID: str = "",

                WEATHER_API_KEYS: str = "",

                BING_SUBSCRIPT_KEY: str = "",

                ALPHA_VANTAGE_KEY: str = "",

                BING_MAP_KEY: str = "",

                BAIDU_TRANSLATE_KEY: str = "",

                BAIDU_SECRET_KEY: str = "") -> str:
    os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
    os.environ["WOLFRAMALPH_APP_ID"] = WOLFRAMALPH_APP_ID
    os.environ["WEATHER_API_KEYS"] = WEATHER_API_KEYS
    os.environ["BING_SUBSCRIPT_KEY"] = BING_SUBSCRIPT_KEY
    os.environ["ALPHA_VANTAGE_KEY"] = ALPHA_VANTAGE_KEY
    os.environ["BING_MAP_KEY"] = BING_MAP_KEY
    os.environ["BAIDU_TRANSLATE_KEY"] = BAIDU_TRANSLATE_KEY
    os.environ["BAIDU_SECRET_KEY"] = BAIDU_SECRET_KEY
    if not tool_server_flag:
        run_tool_server()
        time.sleep(10)
    return gr.update(value="OK!")

def show_avatar_imgs(tools_chosen):
    if len(tools_chosen) == 0:
        tools_chosen = list(valid_tools_info.keys())
    img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>'
    imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None]
    imgs = ' '.join([img_template.format(img, img, tool ) for img, tool in zip(imgs, tools_chosen) ])
    return [gr.update(value='<span class="">'+imgs+'</span>', visible=True), gr.update(visible=True)]

def answer_by_tools(question, tools_chosen, model_chosen):
    global return_msg
    return_msg += [(question, None), (None, '...')]
    yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
    OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')

    if len(tools_chosen) == 0:  # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
        tools_chosen = list(valid_tools_info.keys())

    if len(tools_chosen) == 1:
        answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen)
        agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]], prompt_type="react-with-tool-description", return_intermediate_steps=True)
    else:
        answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(), load_valid_tools({k: tools_mappings[k] for k in tools_chosen}), stream_output=True, llm=model_chosen)

        agent_executor = answerer.build_runner()

    global chat_history
    chat_history += "Question: " + question + "\n"
    question = chat_history
    for inter in agent_executor(question):
        if isinstance(inter, AgentFinish): continue
        result_str = []
        return_msg.pop()
        if isinstance(inter, dict):
            result_str.append("<font color=red>Answer:</font> {}".format(inter['output']))
            chat_history += "Answer:" + inter['output'] + "\n"
            result_str.append("...")
        else:
            not_observation = inter[0].log
            if not not_observation.startswith('Thought:'):
                not_observation = "Thought: " + not_observation
            chat_history += not_observation
            not_observation = not_observation.replace('Thought:', '<font color=green>Thought: </font>')
            not_observation = not_observation.replace('Action:', '<font color=purple>Action: </font>')
            not_observation = not_observation.replace('Action Input:', '<font color=purple>Action Input: </font>')
            result_str.append("{}".format(not_observation))
            result_str.append("<font color=blue>Action output:</font>\n{}".format(inter[1]))
            chat_history += "\nAction output:" + inter[1] + "\n"
            result_str.append("...")
        return_msg += [(None, result) for result in result_str]
        yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
    return_msg.pop()
    if return_msg[-1][1].startswith("<font color=red>Answer:</font> "):
        return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("<font color=red>Answer:</font> ", "<font color=green>Final Answer:</font> "))
    yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)]

def retrieve(tools_search):
    if tools_search == "":
        return gr.update(choices=all_tools_list)
    else:
        url = "http://127.0.0.1:8079/retrieve"
        param = {
            "query": tools_search
        }
        response = requests.post(url, json=param)
        result = response.json()
        retrieved_tools = result["tools"]
        return gr.update(choices=retrieved_tools)

def clear_history():
    global return_msg
    global chat_history
    return_msg = []
    chat_history = ""
    yield gr.update(visible=True, value=return_msg)

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=14):
            gr.Markdown("<h1 align='left'> BMTools </h1>")
        with gr.Column(scale=1):
            gr.Markdown('<img src="https://openbmb.cn/openbmb/img/head_logo.e9d9f3f.png" width="140">')
    with gr.Row():
        # with gr.Column(scale=1):
        #     OPENAI_API_KEY = gr.Textbox(label="OpenAI API KEY:", placeholder="sk-...", type="text")
        #     # WOLFRAMALPH_APP_ID = gr.Textbox(label="WOLFRAMALPH APP ID:", type="text")
        #     # WEATHER_API_KEYS = gr.Textbox(label="WEATHER API KEYS:", type="text")
        #     # BING_SUBSCRIPT_KEY = gr.Textbox(label="BING SUBSCRIPT KEY:", type="text")
        #     # ALPHA_VANTAGE_KEY = gr.Textbox(label="ALPHA VANTAGE KEY:", type="text")
        #     # BING_MAP_KEY = gr.Textbox(label="BING MAP KEY:", type="text")
        #     # BAIDU_TRANSLATE_KEY = gr.Textbox(label="BAIDU TRANSLATE KEY:", type="text")
        #     # BAIDU_SECRET_KEY = gr.Textbox(label="BAIDU SECRET KEY:", type="text")
        #     key_set_btn = gr.Button(value="Set")

        with gr.Column(scale=4):
            with gr.Row():
                with gr.Column(scale=0.85):
                    txt = gr.Textbox(show_label=False, placeholder="Question here. Use Shift+Enter to add new line.", lines=1).style(container=False)
                with gr.Column(scale=0.15, min_width=0):
                    buttonClear = gr.Button("Clear History")
                    buttonStop = gr.Button("Stop", visible=False)

            chatbot = gr.Chatbot(show_label=False, visible=True).style(height=600)

        with gr.Column(scale=1):
            with gr.Column():
                tools_search = gr.Textbox(
                    lines=1,
                    label="Tools Search",
                    info="Please input some text to search tools.",
                )
                buttonSearch = gr.Button("Clear")
                tools_chosen = gr.CheckboxGroup(
                    choices=all_tools_list,
                    value=["chemical-prop"],
                    label="Tools provided",
                    info="Choose the tools to solve your question.",
                )
                model_chosen = gr.Dropdown(
                    list(available_models), value=DEFAULTMODEL, multiselect=False, label="Model provided", info="Choose the model to solve your question, Default means ChatGPT."
                )
                OPENAI_API_KEY = gr.Textbox(label="OpenAI API KEY:", placeholder="sk-...", type="text")
                key_set_btn = gr.Button(value="Set")



    key_set_btn.click(fn=set_environ, inputs=[
            OPENAI_API_KEY,
            # WOLFRAMALPH_APP_ID,
            # WEATHER_API_KEYS,
            # BING_SUBSCRIPT_KEY,
            # ALPHA_VANTAGE_KEY,
            # BING_MAP_KEY,
            # BAIDU_TRANSLATE_KEY,
            # BAIDU_SECRET_KEY
        ], outputs=key_set_btn)
    key_set_btn.click(fn=load_tools, outputs=tools_chosen)

    tools_search.change(retrieve, tools_search, tools_chosen)
    buttonSearch.click(lambda : [gr.update(value=""), gr.update(choices=all_tools_list)], [], [tools_search, tools_chosen])

    txt.submit(lambda : [gr.update(value=''), gr.update(visible=False), gr.update(visible=True)], [], [txt, buttonClear, buttonStop])
    inference_event = txt.submit(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
    buttonStop.click(lambda : [gr.update(visible=True), gr.update(visible=False)], [], [buttonClear, buttonStop], cancels=[inference_event])
    buttonClear.click(clear_history, [], chatbot)

# demo.queue().launch(share=False, inbrowser=True, server_name="127.0.0.1", server_port=7001)
demo.queue().launch()