Spaces:
Runtime error
Runtime error
File size: 11,092 Bytes
b044427 ca64815 b044427 ca64815 b044427 cee8caf d1730b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import gradio as gr
import sys
# sys.path.append('./inference/')
import bmtools
from bmtools.agent.tools_controller import MTQuestionAnswerer, load_valid_tools
from bmtools.agent.singletool import STQuestionAnswerer
from langchain.schema import AgentFinish
import os
import requests
from threading import Thread
from multiprocessing import Process
import time
available_models = ["ChatGPT", "GPT-3.5"]
DEFAULTMODEL = "GPT-3.5"
tools_mappings = {
"klarna": "https://www.klarna.com/",
"chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
"wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
"weather": "http://127.0.0.1:8079/tools/weather/",
"douban-film": "http://127.0.0.1:8079/tools/douban-film/",
"wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
"office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
"bing_search": "http://127.0.0.1:8079/tools/bing_search/",
"map": "http://127.0.0.1:8079/tools/map/",
"stock": "http://127.0.0.1:8079/tools/stock/",
"baidu-translation": "http://127.0.0.1:8079/tools/baidu-translation/",
"nllb-translation": "http://127.0.0.1:8079/tools/nllb-translation/",
}
valid_tools_info = {}
all_tools_list = []
gr.close_all()
MAX_TURNS = 30
MAX_BOXES = MAX_TURNS * 2
return_msg = []
chat_history = ""
tool_server_flag = False
def run_tool_server():
def run_server():
server = bmtools.ToolServer()
# server.load_tool("chemical-prop")
server.load_tool("douban-film")
# server.load_tool("weather")
# server.load_tool("wikipedia")
# server.load_tool("wolframalpha")
# server.load_tool("bing_search")
# server.load_tool("office-ppt")
# server.load_tool("stock")
# server.load_tool("map")
# server.load_tool("nllb-translation")
# server.load_tool("baidu-translation")
# server.load_tool("tutorial")
server.serve()
# server = Thread(target=run_server)
server = Process(target=run_server)
server.start()
global tool_server_flag
tool_server_flag = True
def load_tools():
global valid_tools_info
global all_tools_list
valid_tools_info = load_valid_tools(tools_mappings)
all_tools_list = sorted(list(valid_tools_info.keys()))
return gr.update(choices=all_tools_list)
def set_environ(OPENAI_API_KEY: str,
WOLFRAMALPH_APP_ID: str = "",
WEATHER_API_KEYS: str = "",
BING_SUBSCRIPT_KEY: str = "",
ALPHA_VANTAGE_KEY: str = "",
BING_MAP_KEY: str = "",
BAIDU_TRANSLATE_KEY: str = "",
BAIDU_SECRET_KEY: str = "") -> str:
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
os.environ["WOLFRAMALPH_APP_ID"] = WOLFRAMALPH_APP_ID
os.environ["WEATHER_API_KEYS"] = WEATHER_API_KEYS
os.environ["BING_SUBSCRIPT_KEY"] = BING_SUBSCRIPT_KEY
os.environ["ALPHA_VANTAGE_KEY"] = ALPHA_VANTAGE_KEY
os.environ["BING_MAP_KEY"] = BING_MAP_KEY
os.environ["BAIDU_TRANSLATE_KEY"] = BAIDU_TRANSLATE_KEY
os.environ["BAIDU_SECRET_KEY"] = BAIDU_SECRET_KEY
if not tool_server_flag:
run_tool_server()
time.sleep(10)
return gr.update(value="OK!")
def show_avatar_imgs(tools_chosen):
if len(tools_chosen) == 0:
tools_chosen = list(valid_tools_info.keys())
img_template = '<a href="{}" style="float: left"> <img style="margin:5px" src="{}.png" width="24" height="24" alt="avatar" /> {} </a>'
imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None]
imgs = ' '.join([img_template.format(img, img, tool ) for img, tool in zip(imgs, tools_chosen) ])
return [gr.update(value='<span class="">'+imgs+'</span>', visible=True), gr.update(visible=True)]
def answer_by_tools(question, tools_chosen, model_chosen):
global return_msg
return_msg += [(question, None), (None, '...')]
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
if len(tools_chosen) == 0: # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
tools_chosen = list(valid_tools_info.keys())
if len(tools_chosen) == 1:
answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen)
agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]], prompt_type="react-with-tool-description", return_intermediate_steps=True)
else:
answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(), load_valid_tools({k: tools_mappings[k] for k in tools_chosen}), stream_output=True, llm=model_chosen)
agent_executor = answerer.build_runner()
global chat_history
chat_history += "Question: " + question + "\n"
question = chat_history
for inter in agent_executor(question):
if isinstance(inter, AgentFinish): continue
result_str = []
return_msg.pop()
if isinstance(inter, dict):
result_str.append("<font color=red>Answer:</font> {}".format(inter['output']))
chat_history += "Answer:" + inter['output'] + "\n"
result_str.append("...")
else:
not_observation = inter[0].log
if not not_observation.startswith('Thought:'):
not_observation = "Thought: " + not_observation
chat_history += not_observation
not_observation = not_observation.replace('Thought:', '<font color=green>Thought: </font>')
not_observation = not_observation.replace('Action:', '<font color=purple>Action: </font>')
not_observation = not_observation.replace('Action Input:', '<font color=purple>Action Input: </font>')
result_str.append("{}".format(not_observation))
result_str.append("<font color=blue>Action output:</font>\n{}".format(inter[1]))
chat_history += "\nAction output:" + inter[1] + "\n"
result_str.append("...")
return_msg += [(None, result) for result in result_str]
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
return_msg.pop()
if return_msg[-1][1].startswith("<font color=red>Answer:</font> "):
return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("<font color=red>Answer:</font> ", "<font color=green>Final Answer:</font> "))
yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)]
def retrieve(tools_search):
if tools_search == "":
return gr.update(choices=all_tools_list)
else:
url = "http://127.0.0.1:8079/retrieve"
param = {
"query": tools_search
}
response = requests.post(url, json=param)
result = response.json()
retrieved_tools = result["tools"]
return gr.update(choices=retrieved_tools)
def clear_history():
global return_msg
global chat_history
return_msg = []
chat_history = ""
yield gr.update(visible=True, value=return_msg)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=14):
gr.Markdown("<h1 align='left'> BMTools </h1>")
with gr.Column(scale=1):
gr.Markdown('<img src="https://openbmb.cn/openbmb/img/head_logo.e9d9f3f.png" width="140">')
with gr.Row():
# with gr.Column(scale=1):
# OPENAI_API_KEY = gr.Textbox(label="OpenAI API KEY:", placeholder="sk-...", type="text")
# # WOLFRAMALPH_APP_ID = gr.Textbox(label="WOLFRAMALPH APP ID:", type="text")
# # WEATHER_API_KEYS = gr.Textbox(label="WEATHER API KEYS:", type="text")
# # BING_SUBSCRIPT_KEY = gr.Textbox(label="BING SUBSCRIPT KEY:", type="text")
# # ALPHA_VANTAGE_KEY = gr.Textbox(label="ALPHA VANTAGE KEY:", type="text")
# # BING_MAP_KEY = gr.Textbox(label="BING MAP KEY:", type="text")
# # BAIDU_TRANSLATE_KEY = gr.Textbox(label="BAIDU TRANSLATE KEY:", type="text")
# # BAIDU_SECRET_KEY = gr.Textbox(label="BAIDU SECRET KEY:", type="text")
# key_set_btn = gr.Button(value="Set")
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(show_label=False, placeholder="Question here. Use Shift+Enter to add new line.", lines=1).style(container=False)
with gr.Column(scale=0.15, min_width=0):
buttonClear = gr.Button("Clear History")
buttonStop = gr.Button("Stop", visible=False)
chatbot = gr.Chatbot(show_label=False, visible=True).style(height=600)
with gr.Column(scale=1):
with gr.Column():
tools_search = gr.Textbox(
lines=1,
label="Tools Search",
info="Please input some text to search tools.",
)
buttonSearch = gr.Button("Clear")
tools_chosen = gr.CheckboxGroup(
choices=all_tools_list,
value=["chemical-prop"],
label="Tools provided",
info="Choose the tools to solve your question.",
)
model_chosen = gr.Dropdown(
list(available_models), value=DEFAULTMODEL, multiselect=False, label="Model provided", info="Choose the model to solve your question, Default means ChatGPT."
)
OPENAI_API_KEY = gr.Textbox(label="OpenAI API KEY:", placeholder="sk-...", type="text")
key_set_btn = gr.Button(value="Set")
key_set_btn.click(fn=set_environ, inputs=[
OPENAI_API_KEY,
# WOLFRAMALPH_APP_ID,
# WEATHER_API_KEYS,
# BING_SUBSCRIPT_KEY,
# ALPHA_VANTAGE_KEY,
# BING_MAP_KEY,
# BAIDU_TRANSLATE_KEY,
# BAIDU_SECRET_KEY
], outputs=key_set_btn)
key_set_btn.click(fn=load_tools, outputs=tools_chosen)
tools_search.change(retrieve, tools_search, tools_chosen)
buttonSearch.click(lambda : [gr.update(value=""), gr.update(choices=all_tools_list)], [], [tools_search, tools_chosen])
txt.submit(lambda : [gr.update(value=''), gr.update(visible=False), gr.update(visible=True)], [], [txt, buttonClear, buttonStop])
inference_event = txt.submit(answer_by_tools, [txt, tools_chosen, model_chosen], [chatbot, buttonClear, buttonStop])
buttonStop.click(lambda : [gr.update(visible=True), gr.update(visible=False)], [], [buttonClear, buttonStop], cancels=[inference_event])
buttonClear.click(clear_history, [], chatbot)
# demo.queue().launch(share=False, inbrowser=True, server_name="127.0.0.1", server_port=7001)
demo.queue().launch() |