import gradio as gr
import sys
# sys.path.append('./inference/')
import bmtools
from bmtools.agent.tools_controller import MTQuestionAnswerer, load_valid_tools
from bmtools.agent.singletool import STQuestionAnswerer
from langchain.schema import AgentFinish
import os
import requests
from threading import Thread
from multiprocessing import Process
import time
available_models = ["ChatGPT", "GPT-3.5"]
DEFAULTMODEL = "GPT-3.5"
tools_mappings = {
"klarna": "https://www.klarna.com/",
"chemical-prop": "http://127.0.0.1:8079/tools/chemical-prop/",
"wolframalpha": "http://127.0.0.1:8079/tools/wolframalpha/",
"weather": "http://127.0.0.1:8079/tools/weather/",
"douban-film": "http://127.0.0.1:8079/tools/douban-film/",
"wikipedia": "http://127.0.0.1:8079/tools/wikipedia/",
"office-ppt": "http://127.0.0.1:8079/tools/office-ppt/",
"bing_search": "http://127.0.0.1:8079/tools/bing_search/",
"map": "http://127.0.0.1:8079/tools/map/",
"stock": "http://127.0.0.1:8079/tools/stock/",
"baidu-translation": "http://127.0.0.1:8079/tools/baidu-translation/",
"nllb-translation": "http://127.0.0.1:8079/tools/nllb-translation/",
}
valid_tools_info = {}
all_tools_list = []
gr.close_all()
MAX_TURNS = 30
MAX_BOXES = MAX_TURNS * 2
return_msg = []
chat_history = ""
tool_server_flag = False
def run_tool_server():
def run_server():
server = bmtools.ToolServer()
# server.load_tool("chemical-prop")
server.load_tool("douban-film")
# server.load_tool("weather")
# server.load_tool("wikipedia")
# server.load_tool("wolframalpha")
# server.load_tool("bing_search")
# server.load_tool("office-ppt")
# server.load_tool("stock")
# server.load_tool("map")
# server.load_tool("nllb-translation")
# server.load_tool("baidu-translation")
# server.load_tool("tutorial")
server.serve()
# server = Thread(target=run_server)
server = Process(target=run_server)
server.start()
global tool_server_flag
tool_server_flag = True
def load_tools():
global valid_tools_info
global all_tools_list
valid_tools_info = load_valid_tools(tools_mappings)
all_tools_list = sorted(list(valid_tools_info.keys()))
return gr.update(choices=all_tools_list)
def set_environ(OPENAI_API_KEY: str,
WOLFRAMALPH_APP_ID: str = "",
WEATHER_API_KEYS: str = "",
BING_SUBSCRIPT_KEY: str = "",
ALPHA_VANTAGE_KEY: str = "",
BING_MAP_KEY: str = "",
BAIDU_TRANSLATE_KEY: str = "",
BAIDU_SECRET_KEY: str = "") -> str:
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
os.environ["WOLFRAMALPH_APP_ID"] = WOLFRAMALPH_APP_ID
os.environ["WEATHER_API_KEYS"] = WEATHER_API_KEYS
os.environ["BING_SUBSCRIPT_KEY"] = BING_SUBSCRIPT_KEY
os.environ["ALPHA_VANTAGE_KEY"] = ALPHA_VANTAGE_KEY
os.environ["BING_MAP_KEY"] = BING_MAP_KEY
os.environ["BAIDU_TRANSLATE_KEY"] = BAIDU_TRANSLATE_KEY
os.environ["BAIDU_SECRET_KEY"] = BAIDU_SECRET_KEY
if not tool_server_flag:
run_tool_server()
time.sleep(10)
return gr.update(value="OK!")
def show_avatar_imgs(tools_chosen):
if len(tools_chosen) == 0:
tools_chosen = list(valid_tools_info.keys())
img_template = ' {} '
imgs = [valid_tools_info[tool]['avatar'] for tool in tools_chosen if valid_tools_info[tool]['avatar'] != None]
imgs = ' '.join([img_template.format(img, img, tool ) for img, tool in zip(imgs, tools_chosen) ])
return [gr.update(value=''+imgs+'', visible=True), gr.update(visible=True)]
def answer_by_tools(question, tools_chosen, model_chosen):
global return_msg
return_msg += [(question, None), (None, '...')]
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
if len(tools_chosen) == 0: # if there is no tools chosen, we use all todo (TODO: What if the pool is too large.)
tools_chosen = list(valid_tools_info.keys())
if len(tools_chosen) == 1:
answerer = STQuestionAnswerer(OPENAI_API_KEY.strip(), stream_output=True, llm=model_chosen)
agent_executor = answerer.load_tools(tools_chosen[0], valid_tools_info[tools_chosen[0]], prompt_type="react-with-tool-description", return_intermediate_steps=True)
else:
answerer = MTQuestionAnswerer(OPENAI_API_KEY.strip(), load_valid_tools({k: tools_mappings[k] for k in tools_chosen}), stream_output=True, llm=model_chosen)
agent_executor = answerer.build_runner()
global chat_history
chat_history += "Question: " + question + "\n"
question = chat_history
for inter in agent_executor(question):
if isinstance(inter, AgentFinish): continue
result_str = []
return_msg.pop()
if isinstance(inter, dict):
result_str.append("Answer: {}".format(inter['output']))
chat_history += "Answer:" + inter['output'] + "\n"
result_str.append("...")
else:
not_observation = inter[0].log
if not not_observation.startswith('Thought:'):
not_observation = "Thought: " + not_observation
chat_history += not_observation
not_observation = not_observation.replace('Thought:', 'Thought: ')
not_observation = not_observation.replace('Action:', 'Action: ')
not_observation = not_observation.replace('Action Input:', 'Action Input: ')
result_str.append("{}".format(not_observation))
result_str.append("Action output:\n{}".format(inter[1]))
chat_history += "\nAction output:" + inter[1] + "\n"
result_str.append("...")
return_msg += [(None, result) for result in result_str]
yield [gr.update(visible=True, value=return_msg), gr.update(), gr.update()]
return_msg.pop()
if return_msg[-1][1].startswith("Answer: "):
return_msg[-1] = (return_msg[-1][0], return_msg[-1][1].replace("Answer: ", "Final Answer: "))
yield [gr.update(visible=True, value=return_msg), gr.update(visible=True), gr.update(visible=False)]
def retrieve(tools_search):
if tools_search == "":
return gr.update(choices=all_tools_list)
else:
url = "http://127.0.0.1:8079/retrieve"
param = {
"query": tools_search
}
response = requests.post(url, json=param)
result = response.json()
retrieved_tools = result["tools"]
return gr.update(choices=retrieved_tools)
def clear_history():
global return_msg
global chat_history
return_msg = []
chat_history = ""
yield gr.update(visible=True, value=return_msg)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=14):
gr.Markdown("