Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
def init_page(): | |
st.set_page_config( | |
page_title="Verification Chat", | |
page_icon="π", | |
layout="centered" | |
) | |
st.title("AI Chat with Source Verification") | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [ | |
{"role": "assistant", "content": "Hello! How can I help you today?"} | |
] | |
if "model_name" not in st.session_state: | |
st.session_state.model_name = "facebook/opt-350m" | |
def load_model(): | |
# Add caching to prevent reloading model | |
def get_model(): | |
tokenizer = AutoTokenizer.from_pretrained(st.session_state.model_name) | |
model = AutoModelForCausalLM.from_pretrained(st.session_state.model_name) | |
return tokenizer, model | |
return get_model() | |
def get_response(prompt, tokenizer, model): | |
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True) | |
with torch.no_grad(): | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_length=200, | |
num_return_sequences=1, | |
temperature=0.7, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
def display_messages(): | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
def main(): | |
init_page() | |
tokenizer, model = load_model() | |
# Display chat messages | |
display_messages() | |
# Chat input | |
if prompt := st.chat_input("What's on your mind?"): | |
# Add user message | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message | |
with st.chat_message("user"): | |
st.write(prompt) | |
# Generate response | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
response = get_response(prompt, tokenizer, model) | |
st.write(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
if __name__ == "__main__": | |
main() |