consciousAI commited on
Commit
8da1878
·
1 Parent(s): ab6d9a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -4
app.py CHANGED
@@ -52,7 +52,21 @@ def predict(query, context):
52
  cust_answer_sentence = cust_answer_sentence[0]
53
  else:
54
  cust_answer_sentence = "Failed matching sentence (answer may be split in multiple sentences)"
55
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  #Custom2
57
  cust_answer_2 = _generate(query, context, model="consciousAI/question-answering-generative-t5-v1-base-s-q-c", device=device)
58
  cust_answer_sentence_2 = [_sent for _sent in sent_tokenize(context) if cust_answer_2 in _sent]
@@ -62,7 +76,7 @@ def predict(query, context):
62
  cust_answer_sentence_2 = "Failed matching sentence (answer may be split in multiple sentences)"
63
  cust_answer_span_2 = re.search(cust_answer_2, contextDefault).span()
64
 
65
- return cust_answer, cust_answer_sentence, cust_answer_span, cust_confidence, cust_answer_2, cust_answer_sentence_2, cust_answer_span_2
66
 
67
  with gr.Blocks() as demo:
68
  gr.Markdown(value="# Question Answering Encoders vs Generative\n [Question Answering Leveraging Encoders](https://huggingface.co/anshoomehra/question-answering-roberta-base-s)\n\n[Generative Question Answering](https://huggingface.co/anshoomehra/question-answering-generative-t5-v1-base-s-q-c)")
@@ -78,8 +92,13 @@ with gr.Blocks() as demo:
78
  with gr.Column(variant='compact'):
79
  _predictionM6 = gr.Textbox(label="question-answering-roberta-base-s: Answer Sentence")
80
  _predictionM5 = gr.Textbox(label="question-answering-roberta-base-s: Answer")
81
- _predictionM7 = gr.Textbox(label="question-answering-roberta-base-s:Cisco Q&A Answer Span")
82
  _predictionM8 = gr.Textbox(label="question-answering-roberta-base-s: Answer Confidence")
 
 
 
 
 
83
  with gr.Column(variant='compact'):
84
  _predictionM10 = gr.Textbox(label="question-answering-generative-t5-v1-base-s-q-c: Sentence")
85
  _predictionM9 = gr.Textbox(label="question-answering-generative-t5-v1-base-s-q-c: Answer")
@@ -90,7 +109,7 @@ with gr.Blocks() as demo:
90
  gen_btn = gr.Button("Generate Answers")
91
  gen_btn.click(fn=predict,
92
  inputs=[query, context],
93
- outputs=[_predictionM5, _predictionM6, _predictionM7, _predictionM8, _predictionM9, _predictionM10, _predictionM11]
94
  )
95
 
96
  demo.launch(show_error=True)
 
52
  cust_answer_sentence = cust_answer_sentence[0]
53
  else:
54
  cust_answer_sentence = "Failed matching sentence (answer may be split in multiple sentences)"
55
+
56
+ #Custom3
57
+ cust_model_name_3 = "consciousAI/question-answering-roberta-base-s-v2"
58
+ cust_question_answerer_3 = pipeline('question-answering', model=cust_model_name_3, tokenizer=cust_model_name_3, device=device)
59
+
60
+ cust_output_3 = cust_question_answerer_3(question=query, context=context)
61
+ cust_answer_3 = cust_output_3['answer']
62
+ cust_answer_span_3 = "[" + str(cust_output_3['start']) + "," + str(cust_output_3['end']) + "]"
63
+ cust_confidence_3 = cust_output_3['score']
64
+ cust_answer_sentence_3 = [_sent for _sent in sent_tokenize(context) if cust_answer_3 in _sent]
65
+ if len(cust_answer_sentence_3) > 0:
66
+ cust_answer_sentence_3 = cust_answer_sentence_3[0]
67
+ else:
68
+ cust_answer_sentence_3 = "Failed matching sentence (answer may be split in multiple sentences)"
69
+
70
  #Custom2
71
  cust_answer_2 = _generate(query, context, model="consciousAI/question-answering-generative-t5-v1-base-s-q-c", device=device)
72
  cust_answer_sentence_2 = [_sent for _sent in sent_tokenize(context) if cust_answer_2 in _sent]
 
76
  cust_answer_sentence_2 = "Failed matching sentence (answer may be split in multiple sentences)"
77
  cust_answer_span_2 = re.search(cust_answer_2, contextDefault).span()
78
 
79
+ return cust_answer, cust_answer_sentence, cust_answer_span, cust_confidence, cust_answer_2, cust_answer_sentence_2, cust_answer_span_2, cust_answer_3, cust_answer_sentence_3, cust_answer_span_3, cust_confidence_3
80
 
81
  with gr.Blocks() as demo:
82
  gr.Markdown(value="# Question Answering Encoders vs Generative\n [Question Answering Leveraging Encoders](https://huggingface.co/anshoomehra/question-answering-roberta-base-s)\n\n[Generative Question Answering](https://huggingface.co/anshoomehra/question-answering-generative-t5-v1-base-s-q-c)")
 
92
  with gr.Column(variant='compact'):
93
  _predictionM6 = gr.Textbox(label="question-answering-roberta-base-s: Answer Sentence")
94
  _predictionM5 = gr.Textbox(label="question-answering-roberta-base-s: Answer")
95
+ _predictionM7 = gr.Textbox(label="question-answering-roberta-base-s: Q&A Answer Span")
96
  _predictionM8 = gr.Textbox(label="question-answering-roberta-base-s: Answer Confidence")
97
+ with gr.Column(variant='compact'):
98
+ _predictionM12 = gr.Textbox(label="question-answering-roberta-base-s-v2: Answer Sentence")
99
+ _predictionM13 = gr.Textbox(label="question-answering-roberta-base-s-v2: Answer")
100
+ _predictionM14 = gr.Textbox(label="question-answering-roberta-base-s-v2: Q&A Answer Span")
101
+ _predictionM15 = gr.Textbox(label="question-answering-roberta-base-s-v2: Answer Confidence")
102
  with gr.Column(variant='compact'):
103
  _predictionM10 = gr.Textbox(label="question-answering-generative-t5-v1-base-s-q-c: Sentence")
104
  _predictionM9 = gr.Textbox(label="question-answering-generative-t5-v1-base-s-q-c: Answer")
 
109
  gen_btn = gr.Button("Generate Answers")
110
  gen_btn.click(fn=predict,
111
  inputs=[query, context],
112
+ outputs=[_predictionM5, _predictionM6, _predictionM7, _predictionM8, _predictionM9, _predictionM10, _predictionM11, _predictionM12, _predictionM13, _predictionM14, _predictionM15]
113
  )
114
 
115
  demo.launch(show_error=True)