ShravanHN's picture
initial commit for the llm
0e289da
raw
history blame
5.11 kB
import gradio as gr
import os
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
from accelerate import init_empty_weights, infer_auto_device_map, disk_offload
# Set environment variables
HF_TOKEN = os.getenv("HF_TOKEN")
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''
LICENSE = """
<p/>
---
For more information, visit our [website](https://contentease.ai).
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
def initialize_model(model_name, max_memory=None):
device = torch.device('cpu')
# Load model configuration
config = AutoConfig.from_pretrained(model_name)
with init_empty_weights():
# Initialize model with empty weights
model = AutoModelForCausalLM.from_config(config)
# Create device map based on memory constraints
device_map = infer_auto_device_map(
model, max_memory=max_memory, no_split_module_classes=["GPTNeoXLayer"], dtype="float16"
)
# Determine if offloading is needed
needs_offloading = any(device == 'disk' for device in device_map.values())
if needs_offloading:
# Load model for offloading
model = AutoModelForCausalLM.from_pretrained(
model_name, device_map=device_map, offload_folder="offload",
offload_state_dict=True, torch_dtype=torch.float16
)
offload_directory = "offload/"
# Offload model to disk
disk_offload(model=model, offload_dir=offload_directory)
else:
# Load model normally to specified device
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16
)
model.to(device)
return model
try:
# Initialize the model and tokenizer
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
model = initialize_model(model_name, max_memory={"cpu": "GiB"})
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_TOKEN)
except Exception as e:
print(f"Error initializing model: {e}")
exit(1)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("")
]
def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
message += " Extract all relevant keywords and add quantity from the following text and format the result in nested JSON:"
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False
),
gr.Slider(
minimum=128,
maximum=9012,
step=1,
value=512,
label="Max new tokens",
render=False
),
]
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch(server_port=8000, share=True)