Spaces:
Running
Running
File size: 11,473 Bytes
f0533a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union, List
import math
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from IPython import embed
@dataclass
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class PyramidFlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Euler scheduler.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
shift (`float`, defaults to 1.0):
The shift value for the timestep schedule.
"""
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0, # Following Stable diffusion 3,
stages: int = 3,
stage_range: List = [0, 1/3, 2/3, 1],
gamma: float = 1/3,
):
self.timestep_ratios = {} # The timestep ratio for each stage
self.timesteps_per_stage = {} # The detailed timesteps per stage
self.sigmas_per_stage = {}
self.start_sigmas = {}
self.end_sigmas = {}
self.ori_start_sigmas = {}
# self.init_sigmas()
self.init_sigmas_for_each_stage()
self.sigma_min = self.sigmas[-1].item()
self.sigma_max = self.sigmas[0].item()
self.gamma = gamma
def init_sigmas(self):
"""
initialize the global timesteps and sigmas
"""
num_train_timesteps = self.config.num_train_timesteps
shift = self.config.shift
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
sigmas = timesteps / num_train_timesteps
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
self.timesteps = sigmas * num_train_timesteps
self._step_index = None
self._begin_index = None
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
def init_sigmas_for_each_stage(self):
"""
Init the timesteps for each stage
"""
self.init_sigmas()
stage_distance = []
stages = self.config.stages
training_steps = self.config.num_train_timesteps
stage_range = self.config.stage_range
# Init the start and end point of each stage
for i_s in range(stages):
# To decide the start and ends point
start_indice = int(stage_range[i_s] * training_steps)
start_indice = max(start_indice, 0)
end_indice = int(stage_range[i_s+1] * training_steps)
end_indice = min(end_indice, training_steps)
start_sigma = self.sigmas[start_indice].item()
end_sigma = self.sigmas[end_indice].item() if end_indice < training_steps else 0.0
self.ori_start_sigmas[i_s] = start_sigma
if i_s != 0:
ori_sigma = 1 - start_sigma
gamma = self.config.gamma
corrected_sigma = (1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)) * ori_sigma
# corrected_sigma = 1 / (2 - ori_sigma) * ori_sigma
start_sigma = 1 - corrected_sigma
stage_distance.append(start_sigma - end_sigma)
self.start_sigmas[i_s] = start_sigma
self.end_sigmas[i_s] = end_sigma
# Determine the ratio of each stage according to flow length
tot_distance = sum(stage_distance)
for i_s in range(stages):
if i_s == 0:
start_ratio = 0.0
else:
start_ratio = sum(stage_distance[:i_s]) / tot_distance
if i_s == stages - 1:
end_ratio = 1.0
else:
end_ratio = sum(stage_distance[:i_s+1]) / tot_distance
self.timestep_ratios[i_s] = (start_ratio, end_ratio)
# Determine the timesteps and sigmas for each stage
for i_s in range(stages):
timestep_ratio = self.timestep_ratios[i_s]
timestep_max = self.timesteps[int(timestep_ratio[0] * training_steps)]
timestep_min = self.timesteps[min(int(timestep_ratio[1] * training_steps), training_steps - 1)]
timesteps = np.linspace(
timestep_max, timestep_min, training_steps + 1,
)
self.timesteps_per_stage[i_s] = torch.from_numpy(timesteps[:-1])
stage_sigmas = np.linspace(
1, 0, training_steps + 1,
)
self.sigmas_per_stage[i_s] = torch.from_numpy(stage_sigmas[:-1])
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def _sigma_to_t(self, sigma):
return sigma * self.config.num_train_timesteps
def set_timesteps(self, num_inference_steps: int, stage_index: int, device: Union[str, torch.device] = None):
"""
Setting the timesteps and sigmas for each stage
"""
self.num_inference_steps = num_inference_steps
training_steps = self.config.num_train_timesteps
self.init_sigmas()
stage_timesteps = self.timesteps_per_stage[stage_index]
timestep_max = stage_timesteps[0].item()
timestep_min = stage_timesteps[-1].item()
timesteps = np.linspace(
timestep_max, timestep_min, num_inference_steps,
)
self.timesteps = torch.from_numpy(timesteps).to(device=device)
stage_sigmas = self.sigmas_per_stage[stage_index]
sigma_max = stage_sigmas[0].item()
sigma_min = stage_sigmas[-1].item()
ratios = np.linspace(
sigma_max, sigma_min, num_inference_steps
)
sigmas = torch.from_numpy(ratios).to(device=device)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self._step_index = None
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._step_index = 0
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
sigma = self.sigmas[self.step_index]
sigma_next = self.sigmas[self.step_index + 1]
prev_sample = sample + (sigma_next - sigma) * model_output
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
def __len__(self):
return self.config.num_train_timesteps
|