Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import math | |
import torch.distributed as dist | |
def _all_to_all( | |
input_: torch.Tensor, | |
world_size: int, | |
group: dist.ProcessGroup, | |
scatter_dim: int, | |
gather_dim: int, | |
): | |
if world_size == 1: | |
return input_ | |
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)] | |
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)] | |
dist.all_to_all(output_list, input_list, group=group) | |
return torch.cat(output_list, dim=gather_dim).contiguous() | |
class _AllToAll(torch.autograd.Function): | |
def forward(ctx, input_, process_group, world_size, scatter_dim, gather_dim): | |
ctx.process_group = process_group | |
ctx.scatter_dim = scatter_dim | |
ctx.gather_dim = gather_dim | |
ctx.world_size = world_size | |
output = _all_to_all(input_, ctx.world_size, process_group, scatter_dim, gather_dim) | |
return output | |
def backward(ctx, grad_output): | |
grad_output = _all_to_all( | |
grad_output, | |
ctx.world_size, | |
ctx.process_group, | |
ctx.gather_dim, | |
ctx.scatter_dim, | |
) | |
return ( | |
grad_output, | |
None, | |
None, | |
None, | |
None, | |
) | |
def all_to_all( | |
input_: torch.Tensor, | |
process_group: dist.ProcessGroup, | |
world_size: int = 1, | |
scatter_dim: int = 2, | |
gather_dim: int = 1, | |
): | |
return _AllToAll.apply(input_, process_group, world_size, scatter_dim, gather_dim) |