coolmanx's picture
Upload 4584 files
bc27e65 verified
raw
history blame
11 kB
from pymilvus import MilvusClient as Client
from pymilvus import FieldSchema, DataType
import json
import logging
from typing import Optional
from open_webui.retrieval.vector.main import (
VectorDBBase,
VectorItem,
SearchResult,
GetResult,
)
from open_webui.config import (
MILVUS_URI,
MILVUS_DB,
MILVUS_TOKEN,
)
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
class MilvusClient(VectorDBBase):
def __init__(self):
self.collection_prefix = "open_webui"
if MILVUS_TOKEN is None:
self.client = Client(uri=MILVUS_URI, db_name=MILVUS_DB)
else:
self.client = Client(uri=MILVUS_URI, db_name=MILVUS_DB, token=MILVUS_TOKEN)
def _result_to_get_result(self, result) -> GetResult:
ids = []
documents = []
metadatas = []
for match in result:
_ids = []
_documents = []
_metadatas = []
for item in match:
_ids.append(item.get("id"))
_documents.append(item.get("data", {}).get("text"))
_metadatas.append(item.get("metadata"))
ids.append(_ids)
documents.append(_documents)
metadatas.append(_metadatas)
return GetResult(
**{
"ids": ids,
"documents": documents,
"metadatas": metadatas,
}
)
def _result_to_search_result(self, result) -> SearchResult:
ids = []
distances = []
documents = []
metadatas = []
for match in result:
_ids = []
_distances = []
_documents = []
_metadatas = []
for item in match:
_ids.append(item.get("id"))
# normalize milvus score from [-1, 1] to [0, 1] range
# https://milvus.io/docs/de/metric.md
_dist = (item.get("distance") + 1.0) / 2.0
_distances.append(_dist)
_documents.append(item.get("entity", {}).get("data", {}).get("text"))
_metadatas.append(item.get("entity", {}).get("metadata"))
ids.append(_ids)
distances.append(_distances)
documents.append(_documents)
metadatas.append(_metadatas)
return SearchResult(
**{
"ids": ids,
"distances": distances,
"documents": documents,
"metadatas": metadatas,
}
)
def _create_collection(self, collection_name: str, dimension: int):
schema = self.client.create_schema(
auto_id=False,
enable_dynamic_field=True,
)
schema.add_field(
field_name="id",
datatype=DataType.VARCHAR,
is_primary=True,
max_length=65535,
)
schema.add_field(
field_name="vector",
datatype=DataType.FLOAT_VECTOR,
dim=dimension,
description="vector",
)
schema.add_field(field_name="data", datatype=DataType.JSON, description="data")
schema.add_field(
field_name="metadata", datatype=DataType.JSON, description="metadata"
)
index_params = self.client.prepare_index_params()
index_params.add_index(
field_name="vector",
index_type="HNSW",
metric_type="COSINE",
params={"M": 16, "efConstruction": 100},
)
self.client.create_collection(
collection_name=f"{self.collection_prefix}_{collection_name}",
schema=schema,
index_params=index_params,
)
def has_collection(self, collection_name: str) -> bool:
# Check if the collection exists based on the collection name.
collection_name = collection_name.replace("-", "_")
return self.client.has_collection(
collection_name=f"{self.collection_prefix}_{collection_name}"
)
def delete_collection(self, collection_name: str):
# Delete the collection based on the collection name.
collection_name = collection_name.replace("-", "_")
return self.client.drop_collection(
collection_name=f"{self.collection_prefix}_{collection_name}"
)
def search(
self, collection_name: str, vectors: list[list[float | int]], limit: int
) -> Optional[SearchResult]:
# Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
collection_name = collection_name.replace("-", "_")
result = self.client.search(
collection_name=f"{self.collection_prefix}_{collection_name}",
data=vectors,
limit=limit,
output_fields=["data", "metadata"],
)
return self._result_to_search_result(result)
def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
# Construct the filter string for querying
collection_name = collection_name.replace("-", "_")
if not self.has_collection(collection_name):
return None
filter_string = " && ".join(
[
f'metadata["{key}"] == {json.dumps(value)}'
for key, value in filter.items()
]
)
max_limit = 16383 # The maximum number of records per request
all_results = []
if limit is None:
limit = float("inf") # Use infinity as a placeholder for no limit
# Initialize offset and remaining to handle pagination
offset = 0
remaining = limit
try:
# Loop until there are no more items to fetch or the desired limit is reached
while remaining > 0:
log.info(f"remaining: {remaining}")
current_fetch = min(
max_limit, remaining
) # Determine how many items to fetch in this iteration
results = self.client.query(
collection_name=f"{self.collection_prefix}_{collection_name}",
filter=filter_string,
output_fields=["*"],
limit=current_fetch,
offset=offset,
)
if not results:
break
all_results.extend(results)
results_count = len(results)
remaining -= (
results_count # Decrease remaining by the number of items fetched
)
offset += results_count
# Break the loop if the results returned are less than the requested fetch count
if results_count < current_fetch:
break
log.debug(all_results)
return self._result_to_get_result([all_results])
except Exception as e:
log.exception(
f"Error querying collection {collection_name} with limit {limit}: {e}"
)
return None
def get(self, collection_name: str) -> Optional[GetResult]:
# Get all the items in the collection.
collection_name = collection_name.replace("-", "_")
result = self.client.query(
collection_name=f"{self.collection_prefix}_{collection_name}",
filter='id != ""',
)
return self._result_to_get_result([result])
def insert(self, collection_name: str, items: list[VectorItem]):
# Insert the items into the collection, if the collection does not exist, it will be created.
collection_name = collection_name.replace("-", "_")
if not self.client.has_collection(
collection_name=f"{self.collection_prefix}_{collection_name}"
):
self._create_collection(
collection_name=collection_name, dimension=len(items[0]["vector"])
)
return self.client.insert(
collection_name=f"{self.collection_prefix}_{collection_name}",
data=[
{
"id": item["id"],
"vector": item["vector"],
"data": {"text": item["text"]},
"metadata": item["metadata"],
}
for item in items
],
)
def upsert(self, collection_name: str, items: list[VectorItem]):
# Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
collection_name = collection_name.replace("-", "_")
if not self.client.has_collection(
collection_name=f"{self.collection_prefix}_{collection_name}"
):
self._create_collection(
collection_name=collection_name, dimension=len(items[0]["vector"])
)
return self.client.upsert(
collection_name=f"{self.collection_prefix}_{collection_name}",
data=[
{
"id": item["id"],
"vector": item["vector"],
"data": {"text": item["text"]},
"metadata": item["metadata"],
}
for item in items
],
)
def delete(
self,
collection_name: str,
ids: Optional[list[str]] = None,
filter: Optional[dict] = None,
):
# Delete the items from the collection based on the ids.
collection_name = collection_name.replace("-", "_")
if ids:
return self.client.delete(
collection_name=f"{self.collection_prefix}_{collection_name}",
ids=ids,
)
elif filter:
# Convert the filter dictionary to a string using JSON_CONTAINS.
filter_string = " && ".join(
[
f'metadata["{key}"] == {json.dumps(value)}'
for key, value in filter.items()
]
)
return self.client.delete(
collection_name=f"{self.collection_prefix}_{collection_name}",
filter=filter_string,
)
def reset(self):
# Resets the database. This will delete all collections and item entries.
collection_names = self.client.list_collections()
for collection_name in collection_names:
if collection_name.startswith(self.collection_prefix):
self.client.drop_collection(collection_name=collection_name)