Spaces:
Running
Running
File size: 2,967 Bytes
d7e0d35 5bb6864 cb420aa b506206 5bb6864 b506206 7884a68 b506206 4b200dc b506206 7884a68 b506206 4b200dc b506206 4b200dc b506206 7884a68 b506206 53ebbb5 b506206 cb420aa b506206 33ccf9b b506206 33ccf9b b506206 cb420aa c40f78b b506206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
title: README
emoji: π
colorFrom: gray
colorTo: purple
sdk: static
pinned: false
---
Welcome to the official Hugging Face organisation for Apple!
# Apple Core ML β Build intelligence into your apps with Core ML
[Core ML](https://developer.apple.com/machine-learning/core-ml/) is optimized for on-device performance of a broad variety of model types by leveraging Apple Silicon and minimizing memory footprint and power consumption.
## Core ML Models
- [FastViT](https://huggingface.co/collections/coreml-projects/coreml-fastvit-666b0053e54816747071d755): Image Classification
- [Depth Anything](https://huggingface.co/coreml-projects/coreml-depth-anything-small): Depth estimation.
- [DETR Resnet50](https://huggingface.co/coreml-projects/coreml-detr-semantic-segmentation): Semantic Segmentation
- [Stable Diffusion Core ML models](https://huggingface.co/collections/apple/core-ml-stable-diffusion-666b3b0f4b5f3d33c67c6bbe).
- [Hugging Face Core ML Examples](https://github.com/huggingface/coreml-examples).
# Apple Machine Learning Research
Open research to enable the community to deliver amazing experiences that improve the lives of millions of people every day.
## Models
- OpenELM: open, Transformer-based language model. [Base](https://huggingface.co/collections/apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e) | [Instruct](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
- [MobileCLIP](https://huggingface.co/collections/apple/mobileclip-models-datacompdr-data-665789776e1aa2b59f35f7c8): Mobile-friendly image-text models.
## Datasets
- [FLAIR](https://huggingface.co/datasets/apple/flair): A large image dataset for federated learning.
- [DataCompDR](https://huggingface.co/collections/apple/mobileclip-models-datacompdr-data-665789776e1aa2b59f35f7c8): Improved datasets for training image-text models.
## Benchmarks
- [TiC-CLIP](https://huggingface.co/collections/apple/tic-clip-666097407ed2edff959276e0): Benchmark for the design of efficient continual learning of image-text models over years
# Select Highlights and Other Resources
- [Hugging Face CoreML Examples](https://github.com/huggingface/coreml-examples) β Run Core ML models with two lines of code!
- [Apple Model Gallery](https://developer.apple.com/machine-learning/models/)
- [New features](https://apple.github.io/coremltools/docs-guides/source/new-features.html) in Core ML Tools 8
- [Apple Core ML Stable Diffusion](https://github.com/apple/ml-stable-diffusion) β Library to run Stable Diffusion on Apple Silicon with Core ML.
- Hugging Face Blog Posts
- [Releasing Swift Transformers: Run On-Device LLMs in Apple Devices (Aug, 2023)](https://huggingface.co/blog/swift-coreml-llm)
- [Faster Stable Diffusion with Core ML on iPhone, iPad, and Mac](https://huggingface.co/blog/fast-diffusers-coreml)
- [Using Stable Diffusion with Core ML on Apple Silicon](https://huggingface.co/blog/diffusers-coreml) |