Add simple progress reporting.
Browse files
app.py
CHANGED
@@ -89,9 +89,14 @@ def on_model_change(model):
|
|
89 |
model_type = None
|
90 |
|
91 |
|
92 |
-
def convert_model(preprocessor, model, model_coreml_config,
|
|
|
|
|
|
|
93 |
coreml_config = model_coreml_config(model.config, use_past=use_past, seq2seq=seq2seq)
|
94 |
|
|
|
|
|
95 |
mlmodel = export(
|
96 |
preprocessor,
|
97 |
model,
|
@@ -109,12 +114,14 @@ def convert_model(preprocessor, model, model_coreml_config, compute_units, preci
|
|
109 |
|
110 |
mlmodel.save(filename)
|
111 |
|
|
|
112 |
if tolerance is None:
|
113 |
tolerance = coreml_config.atol_for_validation
|
114 |
validate_model_outputs(coreml_config, preprocessor, model, mlmodel, tolerance)
|
|
|
115 |
|
116 |
|
117 |
-
def convert(model, task, compute_units, precision, tolerance, framework):
|
118 |
model = url_to_model_id(model)
|
119 |
compute_units = compute_units_mapping[compute_units]
|
120 |
precision = precision_mapping[precision]
|
@@ -127,12 +134,13 @@ def convert(model, task, compute_units, precision, tolerance, framework):
|
|
127 |
output = output/f"{precision}_model.mlpackage"
|
128 |
|
129 |
try:
|
|
|
|
|
130 |
preprocessor = get_preprocessor(model)
|
131 |
model = FeaturesManager.get_model_from_feature(task, model, framework=framework)
|
132 |
_, model_coreml_config = FeaturesManager.check_supported_model_or_raise(model, feature=task)
|
133 |
|
134 |
if task in ["seq2seq-lm", "speech-seq2seq"]:
|
135 |
-
# Convert encoder / decoder
|
136 |
convert_model(
|
137 |
preprocessor,
|
138 |
model,
|
@@ -141,8 +149,12 @@ def convert(model, task, compute_units, precision, tolerance, framework):
|
|
141 |
precision,
|
142 |
tolerance,
|
143 |
output,
|
144 |
-
seq2seq="encoder"
|
|
|
|
|
|
|
145 |
)
|
|
|
146 |
convert_model(
|
147 |
preprocessor,
|
148 |
model,
|
@@ -151,7 +163,10 @@ def convert(model, task, compute_units, precision, tolerance, framework):
|
|
151 |
precision,
|
152 |
tolerance,
|
153 |
output,
|
154 |
-
seq2seq="decoder"
|
|
|
|
|
|
|
155 |
)
|
156 |
else:
|
157 |
convert_model(
|
@@ -162,9 +177,12 @@ def convert(model, task, compute_units, precision, tolerance, framework):
|
|
162 |
precision,
|
163 |
tolerance,
|
164 |
output,
|
|
|
|
|
165 |
)
|
166 |
|
167 |
# TODO: push to hub, whatever
|
|
|
168 |
return "Done"
|
169 |
except Exception as e:
|
170 |
return error_str(e)
|
|
|
89 |
model_type = None
|
90 |
|
91 |
|
92 |
+
def convert_model(preprocessor, model, model_coreml_config,
|
93 |
+
compute_units, precision, tolerance, output,
|
94 |
+
use_past=False, seq2seq=None,
|
95 |
+
progress=None, progress_start=0.1, progress_end=0.8):
|
96 |
coreml_config = model_coreml_config(model.config, use_past=use_past, seq2seq=seq2seq)
|
97 |
|
98 |
+
model_label = "model" if seq2seq is None else seq2seq
|
99 |
+
progress(progress_start, desc=f"Converting {model_label}")
|
100 |
mlmodel = export(
|
101 |
preprocessor,
|
102 |
model,
|
|
|
114 |
|
115 |
mlmodel.save(filename)
|
116 |
|
117 |
+
progress(progress_end * 0.8, desc=f"Validating {model_label}")
|
118 |
if tolerance is None:
|
119 |
tolerance = coreml_config.atol_for_validation
|
120 |
validate_model_outputs(coreml_config, preprocessor, model, mlmodel, tolerance)
|
121 |
+
progress(progress_end, desc=f"Done converting {model_label}")
|
122 |
|
123 |
|
124 |
+
def convert(model, task, compute_units, precision, tolerance, framework, progress=gr.Progress()):
|
125 |
model = url_to_model_id(model)
|
126 |
compute_units = compute_units_mapping[compute_units]
|
127 |
precision = precision_mapping[precision]
|
|
|
134 |
output = output/f"{precision}_model.mlpackage"
|
135 |
|
136 |
try:
|
137 |
+
progress(0, desc="Downloading model")
|
138 |
+
|
139 |
preprocessor = get_preprocessor(model)
|
140 |
model = FeaturesManager.get_model_from_feature(task, model, framework=framework)
|
141 |
_, model_coreml_config = FeaturesManager.check_supported_model_or_raise(model, feature=task)
|
142 |
|
143 |
if task in ["seq2seq-lm", "speech-seq2seq"]:
|
|
|
144 |
convert_model(
|
145 |
preprocessor,
|
146 |
model,
|
|
|
149 |
precision,
|
150 |
tolerance,
|
151 |
output,
|
152 |
+
seq2seq="encoder",
|
153 |
+
progress=progress,
|
154 |
+
progress_start=0.1,
|
155 |
+
progress_end=0.45,
|
156 |
)
|
157 |
+
progress(0.6, desc="Converting decoder")
|
158 |
convert_model(
|
159 |
preprocessor,
|
160 |
model,
|
|
|
163 |
precision,
|
164 |
tolerance,
|
165 |
output,
|
166 |
+
seq2seq="decoder",
|
167 |
+
progress=progress,
|
168 |
+
progress_start=0.45,
|
169 |
+
progress_end=0.8,
|
170 |
)
|
171 |
else:
|
172 |
convert_model(
|
|
|
177 |
precision,
|
178 |
tolerance,
|
179 |
output,
|
180 |
+
progress=progress,
|
181 |
+
progress_end=0.8,
|
182 |
)
|
183 |
|
184 |
# TODO: push to hub, whatever
|
185 |
+
progress(1, "Done")
|
186 |
return "Done"
|
187 |
except Exception as e:
|
188 |
return error_str(e)
|