corentinm7 commited on
Commit
a42afc3
·
verified ·
1 Parent(s): 4748d54

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +24 -18
  2. pages/ATP_staining.py +1 -2
  3. pages/home.py +1 -1
  4. pyproject.toml +1 -1
README.md CHANGED
@@ -1,17 +1,34 @@
1
  ---
2
- title: MyoQuant Streamlit
3
  emoji: 🔬
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: docker
7
  app_port: 8501
 
 
 
 
 
 
 
 
 
8
  tags:
9
  - streamlit
10
- license: agpl-3.0
11
- python: 3.10.9
 
 
 
 
 
 
 
 
12
  ---
13
 
14
- ![Twitter Follow](https://img.shields.io/twitter/follow/corentinm_py?style=social) ![Demo Version](https://img.shields.io/badge/Demo-https%3A%2F%2Flbgi.fr%2FMyoQuant%2F-9cf) ![PyPi](https://img.shields.io/badge/PyPi-https%3A%2F%2Fpypi.org%2Fproject%2Fmyoquant%2F-blueviolet) ![Pypi verison](https://img.shields.io/pypi/v/myoquant)
15
 
16
  # MyoQuant-Streamlit🔬: a demo web interface for the MyoQuant tool.
17
 
@@ -33,32 +50,21 @@ This web application is intended for demonstration purposes only.
33
 
34
  ## How to install or deploy the interface
35
 
36
- The demo version is deployed at https://lbgi.fr/MyoQuant/. You can deploy your own demo version using Docker, your own python environment or google Colab for GPU support.
37
 
38
  ### Docker
39
 
40
- You can build the docker image by running `docker build -t streamlit .` and launch the container using `docker run -p 8501:8501 streamlit`.
41
 
42
  ### Non-Docker
43
 
44
- If you do not want to use Docker you can install the poetry package in a miniconda (python 3.9, 3.10) base env, run `poetry install` to install the python env, activate the env with `poetry shell` and launch the app by running `streamlit run run.py`.
45
-
46
- ### Deploy on Google Colab for GPU
47
-
48
- As this application uses various deep-learning model, you could benefit from using a deployment solution that provides a GPU.
49
- To do so, you can leverage Google Colab free GPU to boost this Streamlit application.
50
- To run this app on Google Colab, simply clone the notebook called `google_colab_deploy.ipynb` into Colab and run the four cells. It will automatically download the latest code version, install dependencies and run the app. A link will appear in the output of the lat cell with a structure like `https://word1-word2-try-01-234-567-890.loca.lt`. Click it and the click continue and you’re ready to use the app!
51
 
52
  ## How to Use
53
 
54
  Once on the demo, click on the corresponding staining analysis on the sidebar, and upload your histology image. Results will be displayed in the main area automatically.
55
  For all analysis you can press the "Load Default File" to load a sample image to try the tool.
56
 
57
- ## Troubleshooting
58
-
59
- If you have an error like `libcublas.so[0-9] cannot be found`
60
- It probably means that there is a weird CUDA on CPU-only hardware installation error. Try `pip remove torch` and `pip install torch --index-url https://download.pytorch.org/whl/cpu`, in your python virtual env. It should do the trick.
61
-
62
  ## Contact
63
 
64
  Creator and Maintainer: [**Corentin Meyer**, PhD in Biomedical AI](https://cmeyer.fr/) <[email protected]>. The source code for MyoQuant is available [HERE](https://github.com/lambda-science/MyoQuant).
 
1
  ---
2
+ title: MyoQuant-Streamlit🔬
3
  emoji: 🔬
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: docker
7
  app_port: 8501
8
+ license: agpl-3.0
9
+ python_version: 3.12.11
10
+ pinned: true
11
+ header: mini
12
+ short_description: Quantify pathological features in histology images
13
+ models:
14
+ - corentinm7/MyoQuant-SDH-Model
15
+ datasets:
16
+ - corentinm7/MyoQuant-SDH-Data
17
  tags:
18
  - streamlit
19
+ - myology
20
+ - biology
21
+ - histology
22
+ - muscle
23
+ - cells
24
+ - fibers
25
+ - myopathy
26
+ - SDH
27
+ - myoquant
28
+ preload_from_hub: corentinm7/MyoQuant-SDH-Model
29
  ---
30
 
31
+ ![Twitter Follow](https://img.shields.io/twitter/follow/corentinm_py?style=social) ![PyPi](https://img.shields.io/badge/PyPi-https%3A%2F%2Fpypi.org%2Fproject%2Fmyoquant%2F-blueviolet) ![Pypi verison](https://img.shields.io/pypi/v/myoquant)
32
 
33
  # MyoQuant-Streamlit🔬: a demo web interface for the MyoQuant tool.
34
 
 
50
 
51
  ## How to install or deploy the interface
52
 
53
+ The demo version is deployed at [https://huggingface.co/spaces/corentinm7/MyoQuant](https://huggingface.co/spaces/corentinm7/MyoQuant). You can deploy your own demo version using Docker or your own python environment.
54
 
55
  ### Docker
56
 
57
+ You can build & run the docker image by running `docker build -t myostreamlit:latest . && docker run -p 8501:8501 myostreamlit:latest`
58
 
59
  ### Non-Docker
60
 
61
+ If you do not want to use Docker you can install package using for example [UV](https://github.com/astral-sh/uv). Run `uv sync` to create the python environnement and then run: `uv run streamlit run src/myoquant/streamlit/run.py` or `uv run streamlit run run.py` if you only clone the HuggingFace space repository and not the full MyoQuant package.
 
 
 
 
 
 
62
 
63
  ## How to Use
64
 
65
  Once on the demo, click on the corresponding staining analysis on the sidebar, and upload your histology image. Results will be displayed in the main area automatically.
66
  For all analysis you can press the "Load Default File" to load a sample image to try the tool.
67
 
 
 
 
 
 
68
  ## Contact
69
 
70
  Creator and Maintainer: [**Corentin Meyer**, PhD in Biomedical AI](https://cmeyer.fr/) <[email protected]>. The source code for MyoQuant is available [HERE](https://github.com/lambda-science/MyoQuant).
pages/ATP_staining.py CHANGED
@@ -10,7 +10,6 @@ try:
10
  except:
11
  from imageio import imread
12
  import matplotlib.pyplot as plt
13
- import pandas as pd
14
  import numpy as np
15
  from myoquant.common_func import (
16
  load_cellpose,
@@ -164,7 +163,7 @@ if uploaded_file_atp is not None:
164
  for index, elem in enumerate(count_per_label[0]):
165
  st.write(
166
  "Number of cells classified as ",
167
- labels_predict[int(elem)],
168
  ": ",
169
  count_per_label[1][int(index)],
170
  " ",
 
10
  except:
11
  from imageio import imread
12
  import matplotlib.pyplot as plt
 
13
  import numpy as np
14
  from myoquant.common_func import (
15
  load_cellpose,
 
163
  for index, elem in enumerate(count_per_label[0]):
164
  st.write(
165
  "Number of cells classified as ",
166
+ labels_predict[int(elem)+1],
167
  ": ",
168
  count_per_label[1][int(index)],
169
  " ",
pages/home.py CHANGED
@@ -22,7 +22,7 @@ Once on the demo, click on the corresponding staining analysis on the sidebar, a
22
  For all analysis you can press the "Load Default File" to load a sample image to try the tool.
23
 
24
  ## Contact
25
- Creator and Maintainer: [**Corentin Meyer**, 3rd year PhD Student in the CSTB Team, ICube — CNRS — Unistra](https://lambda-science.github.io/) <[email protected]>
26
  The source code for MyoQuant is available [HERE](https://github.com/lambda-science/MyoQuant).
27
 
28
  ## Partners
 
22
  For all analysis you can press the "Load Default File" to load a sample image to try the tool.
23
 
24
  ## Contact
25
+ Creator and Maintainer: [**Corentin Meyer**, PhD](https://cmeyer.fr/) <[email protected]>
26
  The source code for MyoQuant is available [HERE](https://github.com/lambda-science/MyoQuant).
27
 
28
  ## Partners
pyproject.toml CHANGED
@@ -5,7 +5,7 @@ description = ""
5
  readme = "README.md"
6
  requires-python = "<3.13, >=3.12"
7
  dependencies = [
8
- "myoquant>=0.3.8",
9
  "streamlit",
10
  "pandas",
11
  "numpy",
 
5
  readme = "README.md"
6
  requires-python = "<3.13, >=3.12"
7
  dependencies = [
8
+ "myoquant>=0.3.11",
9
  "streamlit",
10
  "pandas",
11
  "numpy",