Spaces:
Running
Running
File size: 4,143 Bytes
44ac1cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import streamlit as st
import matplotlib.pyplot as plt
image_path_1 = 'C:/Users/DELL E5490/Desktop/project/data/.env/DataAnalysis.jpg'
image_path_2 = 'C:/Users/DELL E5490/Desktop/project/data/.env/Data-Analytics-Life-Cycle.jpg'
st.image(image_path_1, caption=None, use_column_width=True, clamp=True, channels="RGB", output_format="auto")
st.title("Intuition of Data Analysis")
if 'show_data' not in st.session_state:
st.session_state.show_data = False
if 'show_analysis' not in st.session_state:
st.session_state.show_analysis = False
if 'show_python' not in st.session_state:
st.session_state.show_python = False
if 'show_life_cycle' not in st.session_state:
st.session_state.show_life_cycle = False
def toggle(section):
st.session_state.show_data = False
st.session_state.show_analysis = False
st.session_state.show_python = False
st.session_state.show_life_cycle = False
if section == 'data':
st.session_state.show_data = True
elif section == 'analysis':
st.session_state.show_analysis = True
elif section == 'python':
st.session_state.show_python = True
elif section == 'life_cycle':
st.session_state.show_life_cycle = True
if st.button('What is Data π?'):
toggle('data')
if st.session_state.show_data:
st.write("Data consists of facts and information that are used to generate insights and conclusions.")
if st.button('What is Data Analysis π?'):
toggle('analysis')
if st.session_state.show_analysis:
st.write("""Data analysis is a comprehensive process that involves collecting, cleaning, transforming, integrating, reducing, and validating data to uncover meaningful insights. Python is a versatile and powerful tool for data analysis due to its extensive libraries, automation capabilities, and strong community support. By following a structured roadmap for data analysis, including univariate, bivariate, and multivariate analyses, you can effectively explore and understand your data to make informed decisions.""")
if st.button('Why Use Python for Data Analysis π€?'):
toggle('python')
if st.session_state.show_python:
st.markdown("""
While tools like Excel and Power BI are commonly used for data visualization and analysis, Python is a powerful language for data analysis due to several reasons:
- *Versatility*: Python can handle a wide variety of data types and sources, making it suitable for diverse data analysis tasks.
- *Libraries*: Python has extensive libraries such as Pandas, NumPy, Matplotlib, and Scikit-learn that facilitate data manipulation, analysis, and visualization.
- *Automation*: Python allows for automation of repetitive tasks and complex computations, improving efficiency and productivity.
- *Community Support*: Python has a large and active community which means abundant resources, tutorials, and support.
""")
advantages = ['Versatility', 'Libraries', 'Automation', 'Community Support']
scores = [8, 9, 7, 9]
fig, ax = plt.subplots()
ax.barh(advantages, scores, color=['blue', 'green', 'orange', 'red'])
ax.set_xlabel('Importance')
ax.set_title('Advantages of Python for Data Analysis')
st.pyplot(fig)
if st.button('Data Analysis Life Cycle π'):
toggle('life_cycle')
if st.session_state.show_life_cycle:
st.markdown("""
The data analysis life cycle includes the following steps:
- **Case Scenario**: Define the problem statement and the objectives of the analysis.
- **Collect the Data**: If no data is available, fetch the data from relevant sources.
- **Data Understanding**: Preprocess the data by understanding its shape, data types, and description.
- **Data Cleaning**: Clean the null values in the data using imputation methods to ensure accurate analysis.
- **Data Visualization**: Understand the underlying patterns of the data through univariate and bivariate analyses.
- **Outlier Detection**: Remove outliers that create biases in the results.
- **Data Transformation**: Apply transformations for better understanding and analysis of the data.
""") |