File size: 5,982 Bytes
23ef02a
d1e2c43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import streamlit as st

# Custom CSS to change the background color and add 3D arrows
st.markdown("""
    <style>
    .main {
        background-color: #f0f2f6;
    }
    .separator {
        border-top: 3px solid #bbb;
        margin-top: 20px;
        margin-bottom: 20px;
    }
    .content {
        color: #333333;
    }
    .arrow {
        font-size: 24px;
        text-align: center;
        margin-top: -10px;
        margin-bottom: -10px;
    }
    .center-image {
        display: block;
        margin-left: auto;
        margin-right: auto;
        width: 50%;
    }
    </style>
    """, unsafe_allow_html=True)

# Initialize session state
if 'open_expander' not in st.session_state:
    st.session_state.open_expander = None

# Page title
st.title("Data Analysis Roadmap")

# Centered Image
st.image("images/data_analysis.png", use_column_width='always', output_format='PNG')

# Introduction
st.header("Introduction")
st.markdown("<div class='content'>This roadmap is designed for individuals with a basic understanding of Data Analysis. "
         "It outlines the key topics and tools essential for advancing your skills in data analysis.</div>", unsafe_allow_html=True)

# Helper function to add images with 3D arrows
def add_skill_section(title, image_path, description, key):
    if st.session_state.open_expander == key:
        with st.expander(title, expanded=True):
            st.image(image_path, width=100)
            st.markdown(f"<div class='content'>{description}</div>", unsafe_allow_html=True)
            st.session_state.open_expander = key
    else:
        with st.expander(title):
            if st.button("Expand", key=key):
                st.session_state.open_expander = key
                st.experimental_rerun()

    #st.markdown('<div class="arrow">⬇️</div>', unsafe_allow_html=True)

# Excel Section
add_skill_section("Excel", "images/excel_logo.png", """
Excel is a powerful tool for data manipulation and visualization. It's widely used due to its accessibility and robust features.

**Skills:**
- **Data Cleaning**: Removing errors and inconsistencies to ensure data quality.
  - *Example*: Cleaning a sales dataset to remove duplicates.
- **Data Visualization**: Creating charts and graphs to represent data visually.
  - *Example*: Visualizing sales trends over time with line charts.
- **Pivot Tables**: Summarizing data for easy analysis.
  - *Example*: Summarizing sales by region and product.
- **Formulas and Functions**: Automating calculations and data manipulation.
  - *Example*: Using VLOOKUP to combine data from multiple sheets.
- **Data Analysis Toolpak**: Advanced statistical analysis.
  - *Example*: Running regression analysis on marketing data.
""", key="excel")

# SQL Section
add_skill_section("SQL", "images/sql_logo.png", """
SQL is essential for querying and managing databases. It's used to extract, manipulate, and analyze data stored in relational databases.

**Skills:**
- **Basic Queries (SELECT, INSERT, UPDATE, DELETE)**: Retrieving and modifying data.
  - *Example*: Fetching customer information from a database.
- **Joins (INNER, LEFT, RIGHT, FULL)**: Combining data from multiple tables.
  - *Example*: Joining customer and order tables to get complete order details.
- **Aggregations (GROUP BY, HAVING)**: Summarizing data.
  - *Example*: Calculating total sales per region.
- **Subqueries and CTEs**: Writing complex queries.
  - *Example*: Finding customers with orders above a certain amount.
- **Indexing and Optimization**: Improving query performance.
  - *Example*: Adding an index to speed up search queries.
""", key="sql")

# Python Section
add_skill_section("Data Analysis Python", "images/python_logo.png", """
Python is a versatile language used for data analysis, offering powerful libraries for various data-related tasks.

**Skills:**
- **Libraries: pandas, numpy, matplotlib, seaborn**: Essential libraries for data manipulation and visualization.
  - *Example*: Using pandas for data cleaning, matplotlib for plotting sales trends.
- **Data Cleaning and Preparation**: Preparing data for analysis.
  - *Example*: Handling missing values in a dataset.
- **Data Visualization**: Creating detailed and interactive plots.
  - *Example*: Creating scatter plots to visualize relationships between variables.
- **Statistical Analysis**: Performing statistical tests and analyses.
  - *Example*: Running a t-test to compare means of two groups.
- **Automating Data Workflows**: Automating repetitive tasks.
  - *Example*: Writing a script to fetch and process data daily.
""", key="python")

# Data Visualization Tools Section

add_skill_section("Power BI", "images/powerbi_logo.png", """
Power BI is a business analytics tool that provides interactive visualizations and business intelligence capabilities.

**Skills:**
- **Report Creation**: Designing detailed reports.
  - *Example*: Creating financial reports for stakeholders.
- **DAX Functions**: Using Data Analysis Expressions for complex calculations.
  - *Example*: Calculating year-over-year growth.
- **Data Modeling**: Structuring data for efficient analysis.
  - *Example*: Creating a data model to analyze customer behavior.
""", key="powerbi")

# Statistics Section
add_skill_section("Statistics", "images/statistics_logo.png", """
Statistics form the backbone of data analysis, enabling data-driven decision-making.

**Skills:**
- **Descriptive Statistics (Mean, Median, Mode)**: Summarizing data.
  - *Example*: Calculating average customer age.
- **Inferential Statistics (Hypothesis Testing, Confidence Intervals)**: Making predictions and generalizations.
  - *Example*: Testing if a new marketing strategy increases sales.
- **Regression Analysis**: Understanding relationships between variables.
  - *Example*: Analyzing the impact of price changes on sales volume.
- **Probability Theory**: Assessing risk and uncertainty.
  - *Example*: Calculating the likelihood of customer churn.
""", key="statistics")