Spaces:
Sleeping
Sleeping
File size: 9,623 Bytes
23ef02a d1e2c43 49a9165 d1e2c43 49a9165 d1e2c43 49a9165 d1e2c43 49a9165 d1e2c43 49a9165 d1e2c43 49a9165 d1e2c43 49a9165 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import streamlit as st
# Custom CSS to style the page with 3D features
st.markdown("""
<style>
.main {
background-color: #ffffff;
}
.center-image {
display: block;
margin-left: auto;
margin-right: auto;
width: 60%;
box-shadow: 10px 10px 30px rgba(0, 0, 0, 0.3);
border-radius: 15px;
margin-top: 20px;
}
.content {
color: #333333;
padding: 20px;
font-size: 18px;
box-shadow: 5px 5px 15px rgba(0, 0, 0, 0.2);
border-radius: 15px;
background: #f8f9fa;
margin-left: 20px;
margin-top: 20px;
}
.button {
font-size: 20px;
margin-bottom: 20px;
padding: 15px;
box-shadow: 3px 3px 10px rgba(0, 0, 0, 0.2);
border-radius: 10px;
background: #007bff;
color: white;
transition: transform 0.2s, background 0.2s;
border: none;
width: 100%;
text-align: left;
}
.button:hover {
box-shadow: 3px 3px 15px rgba(0, 0, 0, 0.3);
transform: scale(1.05);
cursor: pointer;
background: #0056b3;
}
.button:focus {
outline: none;
box-shadow: 6px 6px 15px rgba(0, 0, 0, 0.3);
transform: scale(1.05);
background: linear-gradient(to bottom, #003580, #002060);
}
</style>
""", unsafe_allow_html=True)
# Page title
st.title("Data Analysis Roadmap")
# Center image at the top
st.image("images/data_analysis.png", use_column_width='always')
# Two-column layout
col1, col2 = st.columns([1, 2])
# Left column with the buttons
with col1:
st.header("Topics")
selection = None
if st.button("Basic Python", key="basic_python"):
selection = "Basic Python"
if st.button("Intermediate Python", key="intermediate_python"):
selection = "Intermediate Python"
if st.button("Descriptive Statistics", key="descriptive_statistics"):
selection = "Descriptive Statistics"
if st.button("NumPy", key="numpy"):
selection = "NumPy"
if st.button("Pandas", key="pandas"):
selection = "Pandas"
if st.button("Matplotlib", key="matplotlib"):
selection = "Matplotlib"
if st.button("Seaborn", key="seaborn"):
selection = "Seaborn"
if st.button("Inferential Statistics", key="inferential_statistics"):
selection = "Inferential Statistics"
# Right column with the topic description
with col2:
if selection:
if selection == "Basic Python":
st.image("images/python_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>Basic Python:</b>
<p>Basic Python covers the fundamental aspects of the Python programming language.</p>
<b>Subtopics:</b>
<ul>
<li>Syntax: Understanding the basic syntax and structure of Python code.</li>
<li>Data Types: Working with strings, lists, dictionaries, and tuples.</li>
<li>Control Flow: Using loops, conditionals, and functions.</li>
<li>File Handling: Reading from and writing to files.</li>
</ul>
<b>Example:</b>
<p>Writing simple programs to automate repetitive tasks, such as renaming files in bulk.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Intermediate Python":
st.image("images/python_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>Intermediate Python:</b>
<p>Intermediate Python includes more advanced features of Python programming.</p>
<b>Subtopics:</b>
<ul>
<li>Modules and Packages: Importing and organizing code into modules.</li>
<li>List Comprehensions: Creating lists in a more readable way.</li>
<li>Error Handling: Using try, except blocks to handle errors.</li>
<li>Classes and Objects: Understanding object-oriented programming concepts.</li>
</ul>
<b>Example:</b>
<p>Building reusable code modules and handling exceptions in data processing scripts.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Descriptive Statistics":
st.image("images/statistics_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>Descriptive Statistics:</b>
<p>Descriptive statistics summarize and describe the main features of a dataset.</p>
<b>Subtopics:</b>
<ul>
<li>Central Tendency: Mean, median, mode.</li>
<li>Dispersion: Variance, standard deviation, range.</li>
<li>Distribution: Quartiles, percentiles, histograms.</li>
</ul>
<b>Example:</b>
<p>Summarizing sales data to understand the average sales per month and the variability in sales.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "NumPy":
st.image("images/numpy_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>NumPy:</b>
<p>NumPy is a fundamental package for numerical computing in Python.</p>
<b>Subtopics:</b>
<ul>
<li>Arrays: Creating and manipulating arrays.</li>
<li>Mathematical Operations: Performing element-wise and matrix operations.</li>
<li>Statistical Functions: Using built-in functions for analysis.</li>
<li>Data Transformation: Reshaping and slicing arrays.</li>
</ul>
<b>Example:</b>
<p>Performing fast and efficient calculations on large datasets, such as computing the sum of all elements in an array.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Pandas":
st.image("images/pandas_logo.png", width=100)
st.markdown("""
<div class='content'>
<b>Pandas:</b>
<p>Pandas is a powerful library for data manipulation and analysis in Python.</p>
<b>Subtopics:</b>
<ul>
<li>DataFrames: Creating and manipulating DataFrames.</li>
<li>Data Cleaning: Handling missing values and duplicates.</li>
<li>Data Transformation: Merging, joining, and concatenating DataFrames.</li>
<li>Data Analysis: Grouping and aggregating data.</li>
</ul>
<b>Example:</b>
<p>Cleaning and analyzing sales data from different regions to find total sales per product category.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Matplotlib":
st.image("images/matplotlib_logo.png", width=100)
st.markdown("""
<div class='content'>
<b>Matplotlib:</b>
<p>Matplotlib is a plotting library for creating static, interactive, and animated visualizations in Python.</p>
<b>Subtopics:</b>
<ul>
<li>Basic Plots: Creating line, bar, and scatter plots.</li>
<li>Customization: Customizing plots with titles, labels, and legends.</li>
<li>Subplots: Creating multiple plots in a single figure.</li>
</ul>
<b>Example:</b>
<p>Visualizing sales trends over time with a line chart and customizing it to include titles and labels.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Seaborn":
st.image("images/seaborn_logo.png", width=100)
st.markdown("""
<div class='content'>
<b>Seaborn:</b>
<p>Seaborn is a data visualization library based on Matplotlib that provides a high-level interface for drawing attractive statistical graphics.</p>
<b>Subtopics:</b>
<ul>
<li>Statistical Plots: Creating plots like histograms, box plots, and violin plots.</li>
<li>Customization: Advanced customization of plots.</li>
<li>Integration: Seamless integration with pandas DataFrames.</li>
</ul>
<b>Example:</b>
<p>Creating a box plot to visualize the distribution of exam scores across different classes.</p>
</div>
""", unsafe_allow_html=True)
elif selection == "Inferential Statistics":
st.image("images/statistics_logo.png", width=50)
st.markdown("""
<div class='content'>
<b>Inferential Statistics:</b>
<p>Inferential statistics allow us to make predictions or inferences about a population based on a sample of data.</p>
<b>Subtopics:</b>
<ul>
<li>Hypothesis Testing: Determining the validity of assumptions.</li>
<li>Confidence Intervals: Estimating population parameters.</li>
<li>Regression Analysis: Modeling relationships between variables.</li>
<li>ANOVA and Chi-Square Tests: Comparing group means and categorical variables.</li>
</ul>
<b>Example:</b>
<p>Using regression analysis to predict future sales based on past data trends and conducting hypothesis tests to determine if a new marketing strategy significantly impacts sales.</p>
</div>
""", unsafe_allow_html=True)
|