import streamlit as st # Custom CSS to change the background color and add 3D arrows st.markdown(""" """, unsafe_allow_html=True) # Initialize session state if 'open_expander' not in st.session_state: st.session_state.open_expander = None # Page title st.title("Data Analysis Roadmap") # Centered Image st.image("images/data_analysis.png", use_column_width='always', output_format='PNG') # Introduction st.header("Introduction") st.markdown("
This roadmap is designed for individuals with a basic understanding of Data Analysis. " "It outlines the key topics and tools essential for advancing your skills in data analysis.
", unsafe_allow_html=True) # Helper function to add images with 3D arrows def add_skill_section(title, image_path, description, key): if st.session_state.open_expander == key: with st.expander(title, expanded=True): st.image(image_path, width=100) st.markdown(f"
{description}
", unsafe_allow_html=True) st.session_state.open_expander = key else: with st.expander(title): if st.button("Expand", key=key): st.session_state.open_expander = key st.experimental_rerun() #st.markdown('
⬇️
', unsafe_allow_html=True) # Excel Section add_skill_section("Excel", "images/excel_logo.png", """ Excel is a powerful tool for data manipulation and visualization. It's widely used due to its accessibility and robust features. **Skills:** - **Data Cleaning**: Removing errors and inconsistencies to ensure data quality. - *Example*: Cleaning a sales dataset to remove duplicates. - **Data Visualization**: Creating charts and graphs to represent data visually. - *Example*: Visualizing sales trends over time with line charts. - **Pivot Tables**: Summarizing data for easy analysis. - *Example*: Summarizing sales by region and product. - **Formulas and Functions**: Automating calculations and data manipulation. - *Example*: Using VLOOKUP to combine data from multiple sheets. - **Data Analysis Toolpak**: Advanced statistical analysis. - *Example*: Running regression analysis on marketing data. """, key="excel") # SQL Section add_skill_section("SQL", "images/sql_logo.png", """ SQL is essential for querying and managing databases. It's used to extract, manipulate, and analyze data stored in relational databases. **Skills:** - **Basic Queries (SELECT, INSERT, UPDATE, DELETE)**: Retrieving and modifying data. - *Example*: Fetching customer information from a database. - **Joins (INNER, LEFT, RIGHT, FULL)**: Combining data from multiple tables. - *Example*: Joining customer and order tables to get complete order details. - **Aggregations (GROUP BY, HAVING)**: Summarizing data. - *Example*: Calculating total sales per region. - **Subqueries and CTEs**: Writing complex queries. - *Example*: Finding customers with orders above a certain amount. - **Indexing and Optimization**: Improving query performance. - *Example*: Adding an index to speed up search queries. """, key="sql") # Python Section add_skill_section("Data Analysis Python", "images/python_logo.png", """ Python is a versatile language used for data analysis, offering powerful libraries for various data-related tasks. **Skills:** - **Libraries: pandas, numpy, matplotlib, seaborn**: Essential libraries for data manipulation and visualization. - *Example*: Using pandas for data cleaning, matplotlib for plotting sales trends. - **Data Cleaning and Preparation**: Preparing data for analysis. - *Example*: Handling missing values in a dataset. - **Data Visualization**: Creating detailed and interactive plots. - *Example*: Creating scatter plots to visualize relationships between variables. - **Statistical Analysis**: Performing statistical tests and analyses. - *Example*: Running a t-test to compare means of two groups. - **Automating Data Workflows**: Automating repetitive tasks. - *Example*: Writing a script to fetch and process data daily. """, key="python") # Data Visualization Tools Section add_skill_section("Power BI", "images/powerbi_logo.png", """ Power BI is a business analytics tool that provides interactive visualizations and business intelligence capabilities. **Skills:** - **Report Creation**: Designing detailed reports. - *Example*: Creating financial reports for stakeholders. - **DAX Functions**: Using Data Analysis Expressions for complex calculations. - *Example*: Calculating year-over-year growth. - **Data Modeling**: Structuring data for efficient analysis. - *Example*: Creating a data model to analyze customer behavior. """, key="powerbi") # Statistics Section add_skill_section("Statistics", "images/statistics_logo.png", """ Statistics form the backbone of data analysis, enabling data-driven decision-making. **Skills:** - **Descriptive Statistics (Mean, Median, Mode)**: Summarizing data. - *Example*: Calculating average customer age. - **Inferential Statistics (Hypothesis Testing, Confidence Intervals)**: Making predictions and generalizations. - *Example*: Testing if a new marketing strategy increases sales. - **Regression Analysis**: Understanding relationships between variables. - *Example*: Analyzing the impact of price changes on sales volume. - **Probability Theory**: Assessing risk and uncertainty. - *Example*: Calculating the likelihood of customer churn. """, key="statistics")