import streamlit as st import matplotlib.pyplot as plt image_path_1 = 'C:/Users/DELL E5490/Desktop/project/data/.env/DataAnalysis.jpg' image_path_2 = 'C:/Users/DELL E5490/Desktop/project/data/.env/Data-Analytics-Life-Cycle.jpg' st.image(image_path_1, caption=None, use_column_width=True, clamp=True, channels="RGB", output_format="auto") st.title("Intuition of Data Analysis") if 'show_data' not in st.session_state: st.session_state.show_data = False if 'show_analysis' not in st.session_state: st.session_state.show_analysis = False if 'show_python' not in st.session_state: st.session_state.show_python = False if 'show_life_cycle' not in st.session_state: st.session_state.show_life_cycle = False def toggle(section): st.session_state.show_data = False st.session_state.show_analysis = False st.session_state.show_python = False st.session_state.show_life_cycle = False if section == 'data': st.session_state.show_data = True elif section == 'analysis': st.session_state.show_analysis = True elif section == 'python': st.session_state.show_python = True elif section == 'life_cycle': st.session_state.show_life_cycle = True if st.button('What is Data 📊?'): toggle('data') if st.session_state.show_data: st.write("Data consists of facts and information that are used to generate insights and conclusions.") if st.button('What is Data Analysis 📈?'): toggle('analysis') if st.session_state.show_analysis: st.write("""Data analysis is a comprehensive process that involves collecting, cleaning, transforming, integrating, reducing, and validating data to uncover meaningful insights. Python is a versatile and powerful tool for data analysis due to its extensive libraries, automation capabilities, and strong community support. By following a structured roadmap for data analysis, including univariate, bivariate, and multivariate analyses, you can effectively explore and understand your data to make informed decisions.""") if st.button('Why Use Python for Data Analysis 🤔?'): toggle('python') if st.session_state.show_python: st.markdown(""" While tools like Excel and Power BI are commonly used for data visualization and analysis, Python is a powerful language for data analysis due to several reasons: - *Versatility*: Python can handle a wide variety of data types and sources, making it suitable for diverse data analysis tasks. - *Libraries*: Python has extensive libraries such as Pandas, NumPy, Matplotlib, and Scikit-learn that facilitate data manipulation, analysis, and visualization. - *Automation*: Python allows for automation of repetitive tasks and complex computations, improving efficiency and productivity. - *Community Support*: Python has a large and active community which means abundant resources, tutorials, and support. """) advantages = ['Versatility', 'Libraries', 'Automation', 'Community Support'] scores = [8, 9, 7, 9] fig, ax = plt.subplots() ax.barh(advantages, scores, color=['blue', 'green', 'orange', 'red']) ax.set_xlabel('Importance') ax.set_title('Advantages of Python for Data Analysis') st.pyplot(fig) if st.button('Data Analysis Life Cycle 🔄'): toggle('life_cycle') if st.session_state.show_life_cycle: st.markdown(""" The data analysis life cycle includes the following steps: - **Case Scenario**: Define the problem statement and the objectives of the analysis. - **Collect the Data**: If no data is available, fetch the data from relevant sources. - **Data Understanding**: Preprocess the data by understanding its shape, data types, and description. - **Data Cleaning**: Clean the null values in the data using imputation methods to ensure accurate analysis. - **Data Visualization**: Understand the underlying patterns of the data through univariate and bivariate analyses. - **Outlier Detection**: Remove outliers that create biases in the results. - **Data Transformation**: Apply transformations for better understanding and analysis of the data. """)