import streamlit as st # Custom CSS to style the page with 3D features st.markdown(""" """, unsafe_allow_html=True) # Page title st.title("Data Analysis Roadmap") # Center image at the top st.image("images/data_analysis.png", use_column_width='always') # Two-column layout col1, col2 = st.columns([1, 2]) # Left column with the buttons with col1: st.header("Topics") selection = None if st.button("Basic Python", key="basic_python"): selection = "Basic Python" if st.button("Intermediate Python", key="intermediate_python"): selection = "Intermediate Python" if st.button("Descriptive Statistics", key="descriptive_statistics"): selection = "Descriptive Statistics" if st.button("NumPy", key="numpy"): selection = "NumPy" if st.button("Pandas", key="pandas"): selection = "Pandas" if st.button("Matplotlib", key="matplotlib"): selection = "Matplotlib" if st.button("Seaborn", key="seaborn"): selection = "Seaborn" if st.button("Inferential Statistics", key="inferential_statistics"): selection = "Inferential Statistics" # Right column with the topic description with col2: if selection: if selection == "Basic Python": st.image("images/python_logo.png", width=50) st.markdown("""
Basic Python:

Basic Python covers the fundamental aspects of the Python programming language.

Subtopics: Example:

Writing simple programs to automate repetitive tasks, such as renaming files in bulk.

""", unsafe_allow_html=True) elif selection == "Intermediate Python": st.image("images/python_logo.png", width=50) st.markdown("""
Intermediate Python:

Intermediate Python includes more advanced features of Python programming.

Subtopics: Example:

Building reusable code modules and handling exceptions in data processing scripts.

""", unsafe_allow_html=True) elif selection == "Descriptive Statistics": st.image("images/statistics_logo.png", width=50) st.markdown("""
Descriptive Statistics:

Descriptive statistics summarize and describe the main features of a dataset.

Subtopics: Example:

Summarizing sales data to understand the average sales per month and the variability in sales.

""", unsafe_allow_html=True) elif selection == "NumPy": st.image("images/numpy_logo.png", width=50) st.markdown("""
NumPy:

NumPy is a fundamental package for numerical computing in Python.

Subtopics: Example:

Performing fast and efficient calculations on large datasets, such as computing the sum of all elements in an array.

""", unsafe_allow_html=True) elif selection == "Pandas": st.image("images/pandas_logo.png", width=100) st.markdown("""
Pandas:

Pandas is a powerful library for data manipulation and analysis in Python.

Subtopics: Example:

Cleaning and analyzing sales data from different regions to find total sales per product category.

""", unsafe_allow_html=True) elif selection == "Matplotlib": st.image("images/matplotlib_logo.png", width=100) st.markdown("""
Matplotlib:

Matplotlib is a plotting library for creating static, interactive, and animated visualizations in Python.

Subtopics: Example:

Visualizing sales trends over time with a line chart and customizing it to include titles and labels.

""", unsafe_allow_html=True) elif selection == "Seaborn": st.image("images/seaborn_logo.png", width=100) st.markdown("""
Seaborn:

Seaborn is a data visualization library based on Matplotlib that provides a high-level interface for drawing attractive statistical graphics.

Subtopics: Example:

Creating a box plot to visualize the distribution of exam scores across different classes.

""", unsafe_allow_html=True) elif selection == "Inferential Statistics": st.image("images/statistics_logo.png", width=50) st.markdown("""
Inferential Statistics:

Inferential statistics allow us to make predictions or inferences about a population based on a sample of data.

Subtopics: Example:

Using regression analysis to predict future sales based on past data trends and conducting hypothesis tests to determine if a new marketing strategy significantly impacts sales.

""", unsafe_allow_html=True)