import streamlit as st import pandas as pd import pickle import numpy as np import sklearn st.title("titanic prediction apps") pclass=st.radio("pclass",[1,2,3]) sex=st.pills("gender",["male","female"]) age=st.slider("age", min_value=1, max_value=120) sibsp=st.selectbox("sibsp",[0, 1, 2, 4, 3, 5, 8]) parch=st.selectbox("parch",[0, 1, 2, 5, 4, 3, 6]) fare=st.slider("fare", min_value=0, max_value=1000) embarked=st.selectbox("embarked",["S","C","Q"]) inputss=pd.DataFrame(np.array([[pclass, sex, age, sibsp, parch, fare, embarked]]),columns=['pclass', 'sex', 'age', 'sibsp', 'parch', 'fare', 'embarked']) pre_proce=pickle.load(open("pre_process","rb")) model=pickle.load(open('model','rb')) if st.button("Submit"): answers=model.predict(pre_proce.transform(inputss))[0] if answers==0: st.write("the person didnt survived") else: st.write("the person survived") else: st.write("not able to predict")