Spaces:
Runtime error
Runtime error
File size: 9,080 Bytes
ebb7ad4 a3bb203 6153d0b ebb7ad4 3a2d933 ebb7ad4 3a2d933 ebb7ad4 0a11636 ebb7ad4 0bb369d 959ab93 ebb7ad4 959ab93 ebb7ad4 0bb369d ebb7ad4 505226c ebb7ad4 5875883 ebb7ad4 5875883 ebb7ad4 01816e5 ebb7ad4 e3a491b ebb7ad4 a3bb203 ebb7ad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel
from diffusers.utils import load_image
from diffusers import (
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
import torch
import os
import random
import numpy as np
from PIL import Image
from typing import Tuple
import gradio as gr
import spaces
DESCRIPTION = """
# CosmicMan
- CosmicMan: A Text-to-Image Foundation Model for Humans (CVPR 2024 (Highlight))
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
schedule_map = {
"ddim" : DDIMScheduler,
"pndm" : PNDMScheduler,
"lms" : LMSDiscreteScheduler,
"euler" : EulerDiscreteScheduler,
"euler_a": EulerAncestralDiscreteScheduler,
"dpm" : DPMSolverMultistepScheduler,
}
examples = [
"A fit Caucasian elderly woman, her wavy white hair above shoulders, wears a pink floral cotton long-sleeve shirt and a cotton hat against a natural landscape in an upper body shot",
"A closeup of a doll with a purple ribbon around her neck, best quality, extremely detailed",
"A closeup of a girl with a butterfly painted on her face",
"A headshot, an asian elderly male, a blue wall, bald above eyes gray hair",
"A closeup portrait shot against a white wall, a fit Caucasian adult female with wavy blonde hair falling above her chest wears a short sleeve silk floral dress and a floral silk normal short sleeve white blouse",
"A headshot, an adult caucasian male, fit, a white wall, red crew cut curly hair, short sleeve normal blue t-shirt, best quality, extremely detailed",
"A closeup of a man wearing a red shirt with a flower design on it",
"There is a man wearing a mask and holding a cell phone",
"Two boys playing in the yard",
]
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
}
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_SEED = np.iinfo(np.int32).max
NUM_IMAGES_PER_PROMPT = 1
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
class NoWatermark:
def apply_watermark(self, img):
return img
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
print("Loading Model!")
schedule: str = "euler_a"
base_model_path: str = "stabilityai/stable-diffusion-xl-base-1.0"
refiner_model_path: str = "stabilityai/stable-diffusion-xl-refiner-1.0"
unet_path: str = "cosmicman/CosmicMan-SDXL"
SCHEDULER = schedule_map[schedule]
scheduler = SCHEDULER.from_pretrained(base_model_path, subfolder="scheduler", torch_dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained(unet_path, torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
unet=unet,
scheduler=scheduler,
torch_dtype=torch.float16,
use_safetensors=True
).to("cuda")
pipe.watermark = NoWatermark()
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
base_model_path, # we found use base_model_path instead of refiner_model_path may get a better performance
scheduler=scheduler,
torch_dtype=torch.float16,
use_safetensors=True
).to("cuda")
refiner.watermark = NoWatermark()
print("Finish Loading Model!")
@spaces.GPU(duration=120)
def generate_image(prompt,
n_prompt="",
style: str = DEFAULT_STYLE_NAME,
steps: int = 50,
height: int = 1024,
width: int = 1024,
scale: float = 7.5,
img_num: int = 4,
seeds: int = 42,
random_seed: bool = False,
):
print("Beign to generate")
image_list = []
for i in range(img_num):
seed = int(randomize_seed_fn(seeds, random_seed))
generator = torch.Generator(device="cuda").manual_seed(seed)
positive_prompt, negative_prompt = apply_style(style, prompt, n_prompt)
image = pipe(positive_prompt, num_inference_steps=steps,
guidance_scale=scale, height=height,
width=width, negative_prompt=negative_prompt,
generator=generator, output_type="latent").images[0]
image = refiner(positive_prompt, negative_prompt=negative_prompt, image=image[None, :]).images[0]
image_list.append((image,f"Seed {seed}"))
return image_list
with gr.Blocks(theme=gr.themes.Soft(),css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
with gr.Column():
input_prompt = gr.Textbox(label="Input prompt", lines=3, max_lines=5)
negative_prompt = gr.Textbox(label="Negative prompt",value="")
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", show_label=False, elem_id="gallery", columns=[2], rows=[2], object_fit="contain", height="auto")
with gr.Accordion("Advanced options", open=False):
with gr.Row():
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
with gr.Row():
height = gr.Slider(minimum=512, maximum=1536, value=1024, label="Height", step=64)
width = gr.Slider(minimum=512, maximum=1536, value=1024, label="Witdh", step=64)
with gr.Row():
steps = gr.Slider(minimum=1, maximum=50, value=30, label="Number of diffusion steps", step=1)
scale = gr.Number(minimum=1, maximum=12, value=7.5, label="Number of scale")
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
random_seed = gr.Checkbox(label="Randomize seed", value=True)
img_num = gr.Slider(minimum=1, maximum=4, value=4, label="Number of images", step=1)
gr.Examples(
examples=examples,
inputs=input_prompt,
outputs=result,
fn=generate_image,
cache_examples=0,
)
gr.on(
triggers=[
input_prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate_image,
inputs = [input_prompt, negative_prompt, style_selection, steps, height, width, scale, img_num, seed, random_seed],
outputs= result,
api_name="run")
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False)
|