Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel | |
from diffusers.utils import load_image | |
from diffusers import ( | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
) | |
import torch | |
import os | |
import random | |
import numpy as np | |
from PIL import Image | |
from typing import Tuple | |
import gradio as gr | |
import spaces | |
DESCRIPTION = """ | |
# CosmicMan | |
- CosmicMan: A Text-to-Image Foundation Model for Humans (CVPR 2024 (Highlight)) | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>" | |
schedule_map = { | |
"ddim" : DDIMScheduler, | |
"pndm" : PNDMScheduler, | |
"lms" : LMSDiscreteScheduler, | |
"euler" : EulerDiscreteScheduler, | |
"euler_a": EulerAncestralDiscreteScheduler, | |
"dpm" : DPMSolverMultistepScheduler, | |
} | |
examples = [ | |
"A fit Caucasian elderly woman, her wavy white hair above shoulders, wears a pink floral cotton long-sleeve shirt and a cotton hat against a natural landscape in an upper body shot", | |
"A closeup of a doll with a purple ribbon around her neck, best quality, extremely detailed", | |
"A closeup of a girl with a butterfly painted on her face", | |
"A headshot, an asian elderly male, a blue wall, bald above eyes gray hair", | |
"A closeup portrait shot against a white wall, a fit Caucasian adult female with wavy blonde hair falling above her chest wears a short sleeve silk floral dress and a floral silk normal short sleeve white blouse", | |
"A headshot, an adult caucasian male, fit, a white wall, red crew cut curly hair, short sleeve normal blue t-shirt, best quality, extremely detailed", | |
"A closeup of a man wearing a red shirt with a flower design on it", | |
"There is a man wearing a mask and holding a cell phone", | |
"Two boys playing in the yard", | |
] | |
style_list = [ | |
{ | |
"name": "(No style)", | |
"prompt": "{prompt}", | |
"negative_prompt": "", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "Photographic", | |
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
} | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "(No style)" | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" | |
MAX_SEED = np.iinfo(np.int32).max | |
NUM_IMAGES_PER_PROMPT = 1 | |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
if not negative: | |
negative = "" | |
return p.replace("{prompt}", positive), n + negative | |
class NoWatermark: | |
def apply_watermark(self, img): | |
return img | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
print("Loading Model!") | |
schedule: str = "euler_a" | |
base_model_path: str = "stabilityai/stable-diffusion-xl-base-1.0" | |
refiner_model_path: str = "stabilityai/stable-diffusion-xl-refiner-1.0" | |
unet_path: str = "cosmicman/CosmicMan-SDXL" | |
SCHEDULER = schedule_map[schedule] | |
scheduler = SCHEDULER.from_pretrained(base_model_path, subfolder="scheduler") | |
# unet = UNet2DConditionModel.from_pretrained(unet_path) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
base_model_path, | |
# unet=unet, | |
scheduler=scheduler, | |
use_safetensors=True | |
).to("cuda") | |
pipe.watermark = NoWatermark() | |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( | |
base_model_path, # we found use base_model_path instead of refiner_model_path may get a better performance | |
scheduler=scheduler, | |
use_safetensors=True | |
).to("cuda") | |
refiner.watermark = NoWatermark() | |
print("Finish Loading Model!") | |
def generate_image(prompt, | |
n_prompt="", | |
style: str = DEFAULT_STYLE_NAME, | |
steps: int = 50, | |
height: int = 1024, | |
width: int = 1024, | |
scale: float = 7.5, | |
img_num: int = 4, | |
seeds: int = 42, | |
random_seed: bool = False, | |
): | |
print("Beign to generate") | |
image_list = [] | |
for i in range(img_num): | |
seed = int(randomize_seed_fn(seeds, random_seed)) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
positive_prompt, negative_prompt = apply_style(style, prompt, n_prompt) | |
image = pipe(positive_prompt, num_inference_steps=steps, | |
guidance_scale=scale, height=height, | |
width=width, negative_prompt=negative_prompt, | |
generator=generator, output_type="latent").images[0] | |
image = refiner(positive_prompt, negative_prompt=negative_prompt, image=image[None, :]).images[0] | |
image_list.append((image,f"Seed {seed}")) | |
return image_list | |
with gr.Blocks(theme=gr.themes.Soft(),css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(): | |
input_prompt = gr.Textbox(label="Input prompt", lines=3, max_lines=5) | |
negative_prompt = gr.Textbox(label="Negative prompt",value="") | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Result", show_label=False, elem_id="gallery", columns=[2], rows=[2], object_fit="contain", height="auto") | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
style_selection = gr.Radio( | |
show_label=True, | |
container=True, | |
interactive=True, | |
choices=STYLE_NAMES, | |
value=DEFAULT_STYLE_NAME, | |
label="Image Style", | |
) | |
with gr.Row(): | |
height = gr.Slider(minimum=512, maximum=1536, value=1024, label="Height", step=64) | |
width = gr.Slider(minimum=512, maximum=1536, value=1024, label="Witdh", step=64) | |
with gr.Row(): | |
steps = gr.Slider(minimum=1, maximum=50, value=30, label="Number of diffusion steps", step=1) | |
scale = gr.Number(minimum=1, maximum=12, value=7.5, label="Number of scale") | |
with gr.Row(): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
random_seed = gr.Checkbox(label="Randomize seed", value=True) | |
img_num = gr.Slider(minimum=1, maximum=4, value=4, label="Number of images", step=1) | |
gr.Examples( | |
examples=examples, | |
inputs=input_prompt, | |
outputs=result, | |
fn=generate_image, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
gr.on( | |
triggers=[ | |
input_prompt.submit, | |
negative_prompt.submit, | |
run_button.click, | |
], | |
fn=generate_image, | |
inputs = [input_prompt, negative_prompt, style_selection, steps, height, width, scale, img_num, seed, random_seed], | |
outputs= result, | |
api_name="run") | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(show_api=False, debug=False) | |