Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,14 @@ import gradio as gr
|
|
4 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
5 |
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags")
|
6 |
|
7 |
-
title = "
|
8 |
description = """
|
9 |
-
<p>
|
10 |
<center>
|
11 |
-
The bot was trained on Rick and Morty dialogues
|
12 |
-
|
13 |
</center>
|
14 |
-
</p>
|
15 |
"""
|
16 |
-
article = "
|
17 |
|
18 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
19 |
import torch
|
@@ -21,7 +19,7 @@ import torch
|
|
21 |
tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
|
22 |
model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
|
23 |
|
24 |
-
def predict(input
|
25 |
# tokenize the new input sentence
|
26 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
27 |
|
@@ -33,13 +31,6 @@ def predict(input, history=[]):
|
|
33 |
|
34 |
# convert the tokens to text, and then split the responses into the right format
|
35 |
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
36 |
-
|
37 |
-
return response, history
|
38 |
|
39 |
-
gr.Interface(fn = predict, inputs = ["textbox"
|
40 |
-
|
41 |
-
#theme ="grass",
|
42 |
-
#title = title,
|
43 |
-
#flagging_callback=hf_writer,
|
44 |
-
#description = description,
|
45 |
-
#article = article
|
|
|
4 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
5 |
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "Rick-bot-flags")
|
6 |
|
7 |
+
title = "Ask Rick a Question"
|
8 |
description = """
|
|
|
9 |
<center>
|
10 |
+
The bot was trained to answer questions based on Rick and Morty dialogues. Ask Rick anything!
|
11 |
+

|
12 |
</center>
|
|
|
13 |
"""
|
14 |
+
article = "Check out (the original Rick and Morty Bot)[https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot] that this demo is based off of."
|
15 |
|
16 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
17 |
import torch
|
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
|
20 |
model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2")
|
21 |
|
22 |
+
def predict(input):
|
23 |
# tokenize the new input sentence
|
24 |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
|
25 |
|
|
|
31 |
|
32 |
# convert the tokens to text, and then split the responses into the right format
|
33 |
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
34 |
+
return response[1]
|
|
|
35 |
|
36 |
+
gr.Interface(fn = predict, inputs = ["textbox"], outputs = ["text"],allow_flagging = "manual",title = title, flagging_callback = hf_writer, description = description, article = article ).launch(enable_queue=True) # customizes the input component
|
|
|
|
|
|
|
|
|
|
|
|