Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Project: Build your own ChatGPT using FastAPI
|
3 |
+
Author: Kaiss Bouali
|
4 |
+
Tutorial:
|
5 |
+
"""
|
6 |
+
|
7 |
+
import uvicorn
|
8 |
+
from fastapi import FastAPI, Request, Form
|
9 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
10 |
+
from pydantic import BaseModel
|
11 |
+
|
12 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
13 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
14 |
+
|
15 |
+
|
16 |
+
class GenerateRequest(BaseModel):
|
17 |
+
prompt: str
|
18 |
+
|
19 |
+
|
20 |
+
app = FastAPI()
|
21 |
+
|
22 |
+
|
23 |
+
@app.post("/generate")
|
24 |
+
def generate(request: Request, data: GenerateRequest):
|
25 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
26 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
27 |
+
input_ids = tokenizer.encode(data.prompt, return_tensors="pt")
|
28 |
+
generated = model.generate(
|
29 |
+
input_ids, max_length=1024, do_sample=True, top_p=0.95, top_k=60
|
30 |
+
)
|
31 |
+
return tokenizer.decode(generated.tolist()[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|