File size: 10,181 Bytes
9a11e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb8ccf
 
 
 
9a11e1b
bcb8ccf
 
 
 
 
 
9a11e1b
 
 
bcb8ccf
 
 
 
 
9a11e1b
 
 
 
bcb8ccf
9a11e1b
 
 
 
 
bcb8ccf
9a11e1b
bcb8ccf
 
 
 
 
 
 
9a11e1b
bcb8ccf
 
 
 
 
 
 
9a11e1b
bcb8ccf
9a11e1b
bcb8ccf
 
9a11e1b
 
bcb8ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a11e1b
 
 
bcb8ccf
 
 
 
9a11e1b
 
bcb8ccf
 
 
 
9a11e1b
bcb8ccf
 
9a11e1b
bcb8ccf
 
 
 
9a11e1b
 
bcb8ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

from collections import defaultdict
from typing import List, Dict, Tuple
from typing_extensions import TypedDict

import datasets
import evaluate
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

from .prediction import Prediction


_CITATION = """\
@inproceedings{Hu:et-al:2020,
  author = {Hu, Jennifer and Gauthier, Jon and Qian, Peng and Wilcox, Ethan and Levy, Roger},
  title = {A systematic assessment of syntactic generalization in neural language models},
  booktitle = {Proceedings of the Association of Computational Linguistics},
  year = {2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Runs SyntaxGym evaluations on the given model and test suite.
Args:
    suite (Dataset): SyntaxGym test suite loaded as a Dataset.
    model_id (str): model used for calculating surprisals
            NOTE: The SyntaxGym evaluations are only well-defined for causal language models.
                    This includes models such as gpt2, causal variations of bert,
                    causal versions of t5, and more (the full list can be found
                    in the AutoModelForCausalLM documentation here:
                    https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
Returns:
    prediction_results: A list of prediction results per item. A list of lists,
            one per item, containing the boolean prediction result for each
            prediction in the test suite,
    region_totals: A list of total surprisals for each region (nested within
            condition and item). A list of dictionaries (one per item), each
            mapping tuples (condition_name, region_number) to a float
            total surprisal value (i.e. negative log-2 probability).
Examples:
    TODO

    >>> my_new_module = evaluate.load("cpllab/syntaxgym")
    >>> ...
"""


SUITE_DATASET_CONDITION_SPEC = {
    "condition_name": datasets.Value("string"),
    "content": datasets.Value("string"),
    "regions": datasets.Sequence({
        "region_number": datasets.Value("int32"),
        "content": datasets.Value("string")
    })
}


SUITE_DATASET_SPEC = {
    "item_number": datasets.Value("int32"),
    "conditions": datasets.Sequence(SUITE_DATASET_CONDITION_SPEC),
    "predictions": datasets.Sequence(datasets.Value("string")),
}


class SyntaxGymMetricResult(TypedDict):
    prediction_results: List[List[bool]]
    region_totals: List[Dict[Tuple[str, int], float]]


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class SyntaxGym(evaluate.EvaluationModule):
    """
    Defines SyntaxGym evaluation logic for causal language models.
    """

    def _info(self):
        seq = datasets.Sequence
        features = datasets.Features({
            "suite": SUITE_DATASET_SPEC
        })
        return evaluate.EvaluationModuleInfo(
            module_type="metric",
            description="TODO",
            citation=_CITATION,
            inputs_description="TODO",
            features=features,
            homepage="https://syntaxgym.org",
            codebase_urls=["https://github.com/cpllab/syntaxgym-core"],
        )

    def _compute(self, suite, model_id, device=None) -> SyntaxGymMetricResult:
        if device is not None:
            assert device in ["gpu", "cpu", "cuda"]
            if device == "gpu":
                device = "cuda"
        else:
            device = "cuda" if torch.cuda.is_available() else "cpu"

        model = AutoModelForCausalLM.from_pretrained(model_id)
        model = model.to(device)
        model.eval()

        tokenizer = AutoTokenizer.from_pretrained(model_id)
        # TODO copy from perplexity metric
        tokenizer.pad_token = tokenizer.eos_token

        results = {"prediction_results": [], "region_totals": []}
        # TODO batch all items together
        for item in datasets.logging.tqdm(suite):
            result_single = self._compute_single(item, tokenizer, model, device)

            for k in ["prediction_results", "region_totals"]:
                results[k].append(result_single[k])

        return results

    def _compute_single(self, item, tokenizer, model, device):
        tokenized = tokenizer(item["conditions"]["content"],
                              padding=True,
                              return_tensors="pt",
                              return_offsets_mapping=True).to(device)

        # input_ids: B * T
        input_ids = tokenized["input_ids"]
        assert input_ids.ndim == 2

        # Compute sentence level surprisals.
        with torch.no_grad():
            # Pre-softmax predictive distribution B * T * V
            logits = model(input_ids).logits
            surprisals = -logits.log_softmax(dim=2) / np.log(2)

        # surprisals: B * T * V
        assert surprisals.ndim == 3

        # Get surprisals of expected words.
        surps_shifted = surprisals[:, :-1, :]
        expected_ids = input_ids[:, 1:]

        # TODO: check this logic
        tt = expected_ids.unsqueeze(2)
        # reindexed surprisals: B * (T - 1)
        surprisals = torch.gather(surps_shifted, 2, expected_ids.unsqueeze(2)) \
            .squeeze(2)
        # This is the original, which works but not with multiple axes in expected_ids
        # surprisals = surps_shifted[range(surps_shifted.shape[0]), expected_ids]

        # surprisals is now B * (T - 1)

        #### aggregate
        condition_names = item["conditions"]["condition_name"]
        region_totals = {condition_name: defaultdict(float)
                         for condition_name in condition_names}
        region2tokens = self.compute_region_token_mapping(
            item, input_ids, tokenized["offset_mapping"])

        for i, (i_cond, i_inputs) in enumerate(zip(condition_names, input_ids)):
            for region_number, region_tokens in region2tokens[i_cond].items():
                for token in region_tokens:
                    if token == 0:
                        # surprisal not defined. pass.
                        continue
                    elif token <= surprisals.shape[1]:
                        region_totals[i_cond][region_number] += surprisals[i, token - 1]
                    else:
                        # TODO don't think this is an issue, just should clean
                        # up the aggregation output
                        assert token == surprisals.shape[1], \
                            "%s %s" % (token, surprisals.shape[1])

        region_totals = {(condition_name, region_number): float(total)
                         for condition_name, totals in region_totals.items()
                         for region_number, total in totals.items()}

        results = {
            "prediction_results": [
                Prediction(i, formula, "sum").formula(region_totals)
                for i, formula in enumerate(item["predictions"])
            ],

            "region_totals": region_totals
        }
        return results

    def get_region_edges(self, item, condition_idx):
        """
        Get left edge of each region as a character index.
        """
        # NB this is coupled with `condition_to_string` logic of course

        regions = item["conditions"]["regions"][condition_idx]

        idx = 0
        ret = []
        for r_idx, region_content in enumerate(regions["content"]):
            ret.append(idx)

            region_size = len(region_content)
            if region_content.strip() != "" and r_idx != 0 and not region_content.startswith(","):
                # Add joining space
                region_size += 1

            idx += region_size

        return ret

    def compute_region_token_mapping(self, item, input_ids: torch.LongTensor,
                                     offset_mapping: List[Tuple[int, int]]
                                     ) -> Dict[str, Dict[int, List[int]]]:
        # input_ids: B * T
        # offset_mapping: B * T * 2
        # assumes batch is sorted according to item's condition_name order

        condition_names = item["conditions"]["condition_name"]
        region2tokens = {cond: defaultdict(list) for cond in condition_names}

        max_long = torch.iinfo(torch.int64).max

        input_ids = input_ids.detach()
        for i_cond, (i_tokens, i_offsets) in enumerate(zip(input_ids, offset_mapping)):
            region_edges = self.get_region_edges(item, i_cond)

            t_cursor, r_cursor = 0, 0
            while t_cursor < i_tokens.shape[0]:
                # token = i_tokens[t_cursor]
                token_char_start, token_char_end = i_offsets[t_cursor]

                if token_char_start == token_char_end == 0:
                    # This is a padding token. Skip.
                    # TODO what about BOS/EOS? some models incorporate them
                    t_cursor += 1
                    continue

                region_start = region_edges[r_cursor]
                region_end = region_edges[r_cursor + 1] \
                    if r_cursor + 1 < len(region_edges) else max_long

                # NB region boundaries are left edges, hence the >= here.
                if token_char_start >= region_end:
                    r_cursor += 1
                    continue

                region2tokens[condition_names[i_cond]][r_cursor + 1].append(t_cursor)
                t_cursor += 1

        return region2tokens