Spaces:
Sleeping
Sleeping
File size: 8,114 Bytes
5754a38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import StreamingResponse
import pandas as pd
from io import BytesIO
import time
from place2geocode import get_lat_long
from utils import setup_logging, clean_address, handle_empty_values, validate_excel_file, meters_to_miles
from distance_calculator import get_distance
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
logger = setup_logging()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def process_uploaded_file(file_stream):
"""Process uploaded file stream and return output Excel bytes"""
# Validate file
is_valid, message = validate_excel_file(file_stream)
if not is_valid:
raise ValueError(message)
# Reset stream position after validation
file_stream.seek(0)
# Rest of the processing code remains the same...
# Create in-memory output file
output = BytesIO()
with pd.ExcelWriter(output) as writer:
sheet_data = extract_address_data(file_stream)
if not sheet_data:
raise ValueError("No valid data found in any sheet.")
for sheet_name, df in sheet_data.items():
addresses = create_address_strings(df)
results = get_route_distances(addresses)
output_df = create_output_dataframe(sheet_name, results)
output_df.to_excel(writer, sheet_name=sheet_name, index=False)
output.seek(0)
return output
def extract_address_data(file_stream):
"""Extract address data from Excel file stream"""
sheet_data = {}
try:
# Read the Excel file directly from the file stream
excel_file = pd.read_excel(file_stream, sheet_name=None, header=1)
except Exception as e:
logger.error(f"Error reading Excel file: {str(e)}")
return {}
required_columns = [
'Address', 'City', 'Zipcode',
'Drop Address', 'Drop City', 'Drop Zipcode'
]
for sheet_name, df in excel_file.items():
if sheet_name.startswith('!'):
continue
logger.info(f"Processing sheet: {sheet_name}")
try:
if not all(col in df.columns for col in required_columns):
missing_cols = [col for col in required_columns if col not in df.columns]
logger.warning(f"Sheet '{sheet_name}' missing columns: {missing_cols}")
continue
df = handle_empty_values(df, required_columns)
df = df.loc[(df['Address'].str.strip() != '') &
(df['Drop Address'].str.strip() != '')]
if df.empty:
logger.warning(f"Sheet '{sheet_name}' has no valid data")
continue
sheet_data[sheet_name] = df
except Exception as e:
logger.error(f"Sheet {sheet_name} error: {str(e)}")
return sheet_data
@app.post("/upload")
async def upload_files(files: list[UploadFile] = File(...)):
"""Handle multiple file uploads and return processed ZIP"""
try:
zip_buffer = BytesIO()
with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED) as zip_file:
for file in files:
if not allowed_file(file.filename):
continue
file_stream = await file.read()
output = process_uploaded_file(BytesIO(file_stream))
zip_file.writestr(f"processed_{file.filename}", output.getvalue())
zip_buffer.seek(0)
return StreamingResponse(
zip_buffer,
media_type="application/zip",
headers={"Content-Disposition": "attachment; filename=processed_files.zip"}
)
except Exception as e:
logger.error(f"Processing error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in \
{'xlsx', 'xls'}
def create_address_strings(df):
"""Create formatted address strings for geocoding."""
addresses = []
for _, row in df.iterrows():
# Clean and format start address
start_address = clean_address(f"{row['Address']}, {row['City']}")
# Clean and format drop address
drop_address = clean_address(f"{row['Drop Address']}, {row['Drop City']}")
addresses.append((start_address, drop_address))
return addresses
def get_route_distances(addresses):
logger = setup_logging()
results = []
for start_address, drop_address in addresses:
try:
# Get coordinates for start address
logger.info(f"Geocoding start address: '{start_address}'")
start_coords = get_lat_long(start_address)
logger.info(f"Start coordinates: {start_coords}")
if not start_coords:
logger.warning(f"Could not geocode start address: '{start_address}'")
results.append((start_address, drop_address, None))
continue
# Get coordinates for drop address
logger.info(f"Geocoding drop address: '{drop_address}'")
drop_coords = get_lat_long(drop_address)
logger.info(f"Drop coordinates: {drop_coords}")
if not drop_coords:
logger.warning(f"Could not geocode drop address: '{drop_address}'")
results.append((start_address, drop_address, None))
continue
# Geopy returns coordinates as (latitude, longitude)
lat1, lon1 = start_coords
lat2, lon2 = drop_coords
logger.info(f"Getting route from ({lat1}, {lon1}) to ({lat2}, {lon2})")
# Try to get driving distance from routing API
distance = get_distance(lon1, lat1, lon2, lat2)
print(distance)
# If API fails, fall back to direct distance
if distance is None:
logger.warning("API routing failed, falling back to direct distance calculation")
distance = get_distance(lat1, lon1, lat2, lon2)
logger.info(f"Direct distance calculated: {distance} miles")
else:
logger.info(f"Route distance calculated: {distance} miles")
distance_in_miles = round(meters_to_miles(distance['routes'][0]['distance']), 2)
results.append((start_address, drop_address, distance_in_miles))
# Add a small delay to avoid overwhelming the geocoding service
time.sleep(0.5)
except Exception as e:
logger.error(f"Error processing route from '{start_address}' to '{drop_address}': {str(e)}")
results.append((start_address, drop_address, None))
return results
def create_output_dataframe(sheet_name, results):
# logger = setup_logging()
data = {
'start': [result[0] for result in results],
'drop': [result[1] for result in results],
'distance': [result[2] for result in results]
}
df = pd.DataFrame(data)
# # Log the dataframe content for debugging
# logger.info(f"Output dataframe for sheet {sheet_name}:")
# logger.info(f"DataFrame shape: {df.shape}")
# logger.info(f"DataFrame columns: {df.columns.tolist()}")
# logger.info(f"First few rows:\n{df.head()}")
# logger.info(f"Distance column data types: {df['distance'].dtype}")
# logger.info(f"Distance column values: {df['distance'].tolist()}")
return df
@app.get("/")
def index():
return "Welcome to the Excel Processor API. Use the /upload endpoint to upload an Excel file."
if __name__ == '__main__':
import uvicorn
uvicorn.run(app, host='0.0.0.0', port=7860, log_level="debug")
|