File size: 5,620 Bytes
74b17e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import argparse
import time
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from tinyllava.utils import *
from tinyllava.data import *
from tinyllava.model import *
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import math
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
# Custom dataset class
class CustomDataset(Dataset):
def __init__(self, questions, image_folder, text_processor, image_processor):
self.questions = questions
self.image_folder = image_folder
self.text_processor = text_processor
self.image_processor = image_processor
def __getitem__(self, index):
line = self.questions[index]
image_file = line["image"]
qs = line["text"]
image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB')
image_tensor = self.image_processor(image)
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
msg = Message()
msg.add_message(qs)
#print(prompt)
result = self.text_processor(msg.messages, mode='eval')
input_ids = result['input_ids']
return input_ids, image_tensor, image.size
def __len__(self):
return len(self.questions)
def collate_fn(batch):
input_ids, image_tensors, image_sizes = zip(*batch)
input_ids = torch.stack(input_ids, dim=0)
image_tensors = torch.stack(image_tensors, dim=0)
return input_ids, image_tensors, image_sizes
# DataLoader
def create_data_loader(questions, image_folder, text_processor, image_processor, batch_size=1, num_workers=4):
assert batch_size == 1, "batch_size must be 1"
dataset = CustomDataset(questions, image_folder, text_processor, image_processor)
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn)
return data_loader
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model, tokenizer, image_processor, context_len = load_pretrained_model(model_path)
text_processor = TextPreprocess(tokenizer, args.conv_mode)
data_args = model.config
image_processor = ImagePreprocess(image_processor, data_args)
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
data_loader = create_data_loader(questions, args.image_folder, text_processor, image_processor)
# print("Tokenizer's eos token: ", tokenizer.eos_token)
model.to(device='cuda')
for (input_ids, image_tensor, image_sizes), line in tqdm(zip(data_loader, questions), total=len(questions)):
idx = line["question_id"]
cur_prompt = line["text"]
# keywords = [tokenizer.eos_token]
# stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
input_ids = input_ids.to(device='cuda', non_blocking=True)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
pad_token_id=tokenizer.pad_token_id,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=args.max_new_tokens,
# stopping_criteria=[stopping_criteria],
image_sizes=image_sizes,
use_cache=True)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
# print("Printing outputs")
# print(outputs)
# time.sleep(5)
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"prompt": cur_prompt,
"text": outputs,
"answer_id": ans_id,
"model_id": args.model_base,
"metadata": {}}) + "\n")
# ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llama")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=128)
parser.add_argument("--image_aspect_ratio", type=str, default="pad")
args = parser.parse_args()
eval_model(args)
|