File size: 6,730 Bytes
74b17e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import torch
import os
import json
import random
import numpy as np
from tqdm import tqdm
import shortuuid

from tinyllava.utils import *
from tinyllava.data import *
from tinyllava.model import *

from PIL import Image
import math


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i : i + chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


def parse_multi_choice_response(response, all_choices, index2ans):
    """
    Parse the prediction from the generated response.
    Return the predicted index e.g., A, B, C, D.
    """
    for char in [",", ".", "!", "?", ";", ":", "'"]:
        response = response.strip(char)
    response = " " + response + " "  # add space to avoid partial match

    index_ans = True
    ans_with_brack = False
    candidates = []
    for choice in all_choices:  # e.g., (A) (B) (C) (D)
        if f"({choice})" in response:
            candidates.append(choice)
            ans_with_brack = True

    if len(candidates) == 0:
        for choice in all_choices:  # e.g., A B C D
            if f" {choice} " in response:
                candidates.append(choice)

    # if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
    if len(candidates) == 0 and len(response.split()) > 5:
        for index, ans in index2ans.items():
            if ans.lower() in response.lower():
                candidates.append(index)
                index_ans = False  # it's content ans.

    if len(candidates) == 0:  # still not get answer, randomly choose one.
        pred_index = random.choice(all_choices)
    elif len(candidates) > 1:
        start_indexes = []
        if index_ans:
            if ans_with_brack:
                for can in candidates:
                    index = response.rfind(f"({can})")
                    start_indexes.append(index)  # -1 will be ignored anyway
                # start_indexes = [generated_response.index(f'({can})') for can in candidates]
            else:
                for can in candidates:
                    index = response.rfind(f" {can} ")
                    start_indexes.append(index)
        else:
            for can in candidates:
                index = response.lower().rfind(index2ans[can].lower())
                start_indexes.append(index)
        # get the last one
        pred_index = candidates[np.argmax(start_indexes)]
    else:  # if only one candidate, use it.
        pred_index = candidates[0]

    return pred_index


def eval_model(args):
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model, tokenizer, image_processor, context_len = load_pretrained_model(model_path)

    text_processor = TextPreprocess(tokenizer, args.conv_mode)
    data_args = model.config
    image_processor = ImagePreprocess(image_processor, data_args)

    questions = json.load(open(os.path.expanduser(args.question_file), "r"))
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")
    model.to(device="cuda")
    for i, line in enumerate(tqdm(questions)):
        idx = line["id"]
        question = line["prompt"]

        if "image" in line:
            image_file = line["image"]
            # image = Image.open(image_file).convert("RGB")
            image = Image.open(os.path.join(args.image_folder, image_file)).convert("RGB")
            image_sizes = [image.size]
            image = image_processor(image)
            images = image.unsqueeze(0).half().cuda()
            question = "<image>" + "\n" + question
        else:
            images = None
            image_sizes = None

        msg = Message()
        msg.add_message(question)
        # print(msg.messages)

        result = text_processor(msg.messages, mode='eval')
        # print(result["prompt"])
        input_ids = result['input_ids']
        input_ids = input_ids.unsqueeze(0).cuda()

        with torch.inference_mode():
            if images is not None:
                output_ids = model.generate(
                    input_ids,
                    images=images,
                    image_sizes=image_sizes,
                    do_sample=True if args.temperature > 0 else False,
                    temperature=args.temperature,
                    max_new_tokens=1024,
                    use_cache=True,
                    pad_token_id=tokenizer.pad_token_id,
                )
                outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
            else:
                if line["question_type"] == "multiple-choice":
                    all_choices = line["all_choices"]
                    outputs = random.choice(all_choices)
                else:
                    outputs = "INVALID GENERATION FOR MULTIPLE IMAGE INPUTS"

        if line["question_type"] == "multiple-choice":
            pred_ans = parse_multi_choice_response(
                outputs, line["all_choices"], line["index2ans"]
            )
        else:  # open question
            pred_ans = outputs
        
        # print(outputs, pred_ans)

        ans_id = shortuuid.uuid()
        ans_file.write(json.dumps({"question_id": idx,
                                   "prompt": questions,
                                   "text": pred_ans,
                                   "answer_id": ans_id,
                                   "model_id": args.model_path.split("/")[-1],
                                   "metadata": {}}) + "\n")
        ans_file.flush()
    ans_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.json")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="llama")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--answer-prompter", action="store_true")
    parser.add_argument("--image_aspect_ratio", type=str, default="pad")
    args = parser.parse_args()

    eval_model(args)