File size: 1,736 Bytes
74b17e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import logging
import os
import sys

import torch.distributed as dist


root_logger = None

def print_rank0(*args):
    local_rank = dist.get_rank()
    if local_rank == 0:
        print(*args)

def logger_setting(save_dir=None):
    global root_logger
    if root_logger is not None:
        return root_logger
    else:
        root_logger = logging.getLogger()
        root_logger.setLevel(logging.INFO)
        ch = logging.StreamHandler(stream=sys.stdout)
        ch.setLevel(logging.INFO)
        formatter = logging.Formatter("%(asctime)s | %(levelname)s: %(message)s")
        ch.setFormatter(formatter)
        root_logger.addHandler(ch)

        if save_dir:
            if not os.path.exists(save_dir):
                os.makedirs(save_dir, exist_ok=True)
            save_file = os.path.join(save_dir, 'log.txt')
            if not os.path.exists(save_file):
                os.system(f"touch {save_file}")
            fh = logging.FileHandler(save_file, mode='a')
            fh.setLevel(logging.INFO)
            fh.setFormatter(formatter)
            root_logger.addHandler(fh)
            return root_logger
        
def log(*args):
    global root_logger
    local_rank = dist.get_rank()
    if local_rank == 0:
        root_logger.info(*args)



        
def log_trainable_params(model):
    total_params = sum(p.numel() for p in model.parameters())
    total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    log(f'Total Parameters: {total_params}, Total Trainable Parameters: {total_trainable_params}')
    log(f'Trainable Parameters:')
    for name, param in model.named_parameters():
        if param.requires_grad:
            print_rank0(f"{name}: {param.numel()} parameters")