File size: 1,300 Bytes
74b17e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/bin/bash

gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
IFS=',' read -ra GPULIST <<< "$gpu_list"

CHUNKS=${#GPULIST[@]}

SPLIT="llava_vqav2_mscoco_test-dev2015"

MODEL_PATH="/mnt/data/sata/yinghu/checkpoints/llava_factory/tiny-llava-phi-2-clip-vit-large-patch14-336-baseline-finetune/"
MODEL_NAME="tiny-llava-phi-2-clip-vit-large-patch14-336-baseline-finetune2"
EVAL_DIR="/home/ai/data/llava/dataset/eval"

for IDX in $(seq 0 $((CHUNKS-1))); do
    CUDA_VISIBLE_DEVICES=${GPULIST[$IDX]} python -m tinyllava.eval.model_vqa_loader \
        --model-path $MODEL_PATH \
        --question-file $EVAL_DIR/vqav2/$SPLIT.jsonl \
        --image-folder $EVAL_DIR/vqav2/test2015 \
        --answers-file $EVAL_DIR/vqav2/answers/$SPLIT/$MODEL_NAME/${CHUNKS}_${IDX}.jsonl \
        --num-chunks $CHUNKS \
        --chunk-idx $IDX \
        --temperature 0 \
        --conv-mode phi &
done

wait

output_file=$EVAL_DIR/vqav2/answers/$SPLIT/$MODEL_NAME/merge.jsonl

# Clear out the output file if it exists.
> "$output_file"

# Loop through the indices and concatenate each file.
for IDX in $(seq 0 $((CHUNKS-1))); do
    cat $EVAL_DIR/vqav2/answers/$SPLIT/$MODEL_NAME/${CHUNKS}_${IDX}.jsonl >> "$output_file"
done

python scripts/convert_vqav2_for_submission.py --split $SPLIT --ckpt $MODEL_NAME --dir $EVAL_DIR/vqav2