Spaces:
Runtime error
Runtime error
File size: 9,470 Bytes
74b17e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
from collections import defaultdict
from torch.nn.parallel import DistributedDataParallel
from matplotlib import pyplot as plt
import torch
import requests
from io import BytesIO
from PIL import Image, ImageDraw
from torchvision.transforms import ToPILImage
import torch.nn.functional as F
import numpy as np
import os
import datetime
from tinyllava.data import *
from tinyllava.utils import *
from tinyllava.model import *
import pdb
def load_image(image_file):
if image_file.startswith("http") or image_file.startswith("https"):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def load_images(image_files):
out = []
for image_file in image_files:
image = load_image(image_file)
out.append(image)
return out
def extract_max_values_and_indices(tensor, k):
max_values, max_indices = torch.topk(tensor, k, dim=2)
max_values_with_indices = torch.stack((max_indices, max_values), dim=3)
return max_values_with_indices
def visualize_grid_to_grid(i, mask, image, output_dir, grid_size=27, alpha=0.6):
if not isinstance(grid_size, tuple):
grid_size = (grid_size, grid_size)
mask = mask.detach().cpu().numpy()
mask = Image.fromarray(mask).resize((384, 384))
fig, ax = plt.subplots(1, 2, figsize=(10, 7))
fig.tight_layout()
ax[0].imshow(image)
ax[0].axis('off')
ax[1].imshow(image)
im = ax[1].imshow(mask / np.max(mask), alpha=alpha, cmap='rainbow')
ax[1].axis('off')
cbar = fig.colorbar(im, ax=ax[1])
cbar.set_label('Color Temperature')
name = os.path.join(output_dir, "hot_image", f"{i}.png")
plt.savefig(name)
plt.close(fig)
def generate_square_subsequent_mask(sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def generate_word_images(tokenizer, top_words_tensor, num, input_ids, embed_tokens, output_dir):
num_top_words = top_words_tensor.shape[1]
for i in range(num_top_words - num, num_top_words):
fig, ax = plt.subplots()
word_indices = top_words_tensor[0, i, :, 0].detach().cpu().numpy()
probabilities = top_words_tensor[0, i, :, 1].detach().cpu().numpy()
colors = plt.cm.viridis(probabilities)
for j, (word_index, color, prob) in enumerate(zip(word_indices, colors, probabilities)):
word = tokenizer.decode([int(word_index)])
prob_text = f"{word} P: {prob:.2f}"
ax.text(0.5, 0.9 - j * 0.1, prob_text, color=color, ha='center', va='center', transform=ax.transAxes)
ax.axis('off')
ax.set_title('Top Words for Index {}'.format(i - num_top_words + num + 1))
plt.savefig(os.path.join(output_dir, 'word', f"word_image_{i - num_top_words + num + 1}.png"))
plt.close()
def generate_word_images_before(tokenizer, input_ids, tensor, num, top_words_tensor, output_dir):
num_top_words = tensor.shape[2]
result = tensor.mean(dim=1) # [1, len, len]
input_ids_fir = input_ids[input_ids != -200].unsqueeze(0)
for i in range(num_top_words - num, num_top_words - 1):
top1_indices = top_words_tensor[0, i, 0, 0].long()
fig, ax = plt.subplots()
result_1 = result[0, i, 0:input_ids.shape[1]]
result_1 = result_1[input_ids.squeeze() != -200]
if not i == num_top_words - num:
result_2 = result[0, i, num_top_words - num + 1:i + 1]
result_1 = torch.cat((result_1, result_2), dim=0)
if not i == num_top_words - num:
output_ids = top_words_tensor[0, num_top_words - num:i, 0, 0].unsqueeze(0).long()
input_ids_fir = torch.cat((input_ids_fir, output_ids), dim=1)
tv, ti = torch.topk(result_1.squeeze(), 8)
tv = tv / torch.max(tv)
probabilities = tv.detach().cpu().numpy()
colors = plt.cm.viridis(probabilities)
for j, (word_index, color, prob) in enumerate(zip(ti, colors, probabilities)):
word = tokenizer.decode(input_ids_fir[0, word_index.item()])
prob_text = f"{word} P: {prob:.2f}"
ax.text(0.5, 0.9 - j * 0.1, prob_text, color=color, ha='center', va='center', transform=ax.transAxes)
ax.axis('off')
ax.set_title(
'similarities of output word {}'.format(tokenizer.decode([top1_indices.detach().cpu().numpy()])))
plt.savefig(os.path.join(output_dir, 'word_before', f"word_image_{i - (num_top_words - num - 1)}.png"))
plt.close()
class Monitor:
def __init__(self, args, model, llm_layers_index):
self.model = model
self.args = args
self.input_ids = None
self.image = None
self.params = list(model.parameters())
self.output = defaultdict(dict)
self.attentions = []
self.hidden = []
self.logit = []
self.image_token = []
self.llm_layers_index = llm_layers_index
self._register(llm_layers_index)
def _register(self, llm_layers_index):
def attention_hook(module, input, output):
self.hidden.append(input[0])
def output_hook(module, input, output):
self.logit.append(output)
def image_hook(module, input, output):
self.image_token.append(output)
mod = self.model
mod.language_model.model.layers[llm_layers_index].register_forward_hook(attention_hook)
mod.language_model.lm_head.register_forward_hook(output_hook)
mod.connector.register_forward_hook(image_hook)
def prepare_input(self):
# 获得input_ids
qs = self.args.query
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
text_processor = TextPreprocess(self.model.tokenizer, self.args.conv_mode)
msg = Message()
msg.add_message(qs)
result = text_processor(msg.messages, mode='eval')
self.input_ids = result['input_ids'].unsqueeze(0).cuda()
# 获得图片tensor
data_args = self.model.config
image_processor = self.model.vision_tower._image_processor
image_processor = ImagePreprocess(image_processor, data_args)
image_files = self.args.image_file.split(self.args.sep)
images = load_images(image_files)[0]
images_tensor = image_processor(images)
image_tensor = 255 * (images_tensor - images_tensor.min()) / (images_tensor.max() - images_tensor.min())
image_tensor = image_tensor.clamp(0, 255)
image_tensor = image_tensor.byte()
to_pil = ToPILImage()
self.image = to_pil(image_tensor).convert('RGB')
self.model.cuda()
self.logit = F.softmax(torch.cat(self.logit, dim=1), dim=2)
hidden_tensor = torch.cat(self.hidden, dim=1)
length = hidden_tensor.shape[1]
attention_mask = torch.unsqueeze(
torch.unsqueeze(generate_square_subsequent_mask(length).clone().detach(), dim=0),
dim=0).cuda()
self.hidden = self.model.language_model.model.layers[self.llm_layers_index](hidden_tensor,
output_attentions=True,
attention_mask=attention_mask)
self.image_token = self.image_token[0].squeeze()
self.image_token = torch.cat((torch.zeros(1, 2560).cuda(), self.image_token), dim=0)
def get_output(self, output_dir='results/'):
print("Starting visualization...")
self.prepare_input()
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = os.path.join(output_dir, f"run_{timestamp}")
os.makedirs(output_dir, exist_ok=True)
os.makedirs(os.path.join(output_dir, 'word'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'word_before'), exist_ok=True)
os.makedirs(os.path.join(output_dir, 'hot_image'), exist_ok=True)
num = self.logit.shape[1] - 726 - len(self.input_ids[0])
result = extract_max_values_and_indices(self.logit, 8)
generate_word_images(self.model.tokenizer, result, num, self.input_ids,
self.model.language_model.model.embed_tokens.weight, output_dir)
generate_word_images_before(self.model.tokenizer, self.input_ids, self.hidden[1], num, result, output_dir)
result_top1 = result[0, :, 0, 0].squeeze()
for i in range(len(result_top1) - num, len(result_top1)):
word_id = result_top1[i]
word_id_tensor = torch.tensor([word_id]).long().cuda()
word_vector = self.model.language_model.model.embed_tokens(word_id_tensor).squeeze().detach()
vector_expanded = word_vector.unsqueeze(0).expand_as(self.image_token)
vector_norm = F.normalize(vector_expanded, p=2, dim=1)
matrix_norm = F.normalize(self.image_token, p=2, dim=1)
cosine_similarities = torch.sum(vector_norm * matrix_norm, dim=1)
normalized_similarities = F.softmax(cosine_similarities, dim=0)
visualize_grid_to_grid('hot_image_' + str(i - (len(result_top1) - num) + 1),
normalized_similarities.view(27, 27),
self.image, output_dir)
print("Completed visualization.")
|