File size: 9,470 Bytes
74b17e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from collections import defaultdict
from torch.nn.parallel import DistributedDataParallel
from matplotlib import pyplot as plt
import torch
import requests
from io import BytesIO
from PIL import Image, ImageDraw
from torchvision.transforms import ToPILImage
import torch.nn.functional as F
import numpy as np
import os
import datetime
from tinyllava.data import *
from tinyllava.utils import *
from tinyllava.model import *
import pdb

def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


def load_images(image_files):
    out = []
    for image_file in image_files:
        image = load_image(image_file)
        out.append(image)
    return out


def extract_max_values_and_indices(tensor, k):
    max_values, max_indices = torch.topk(tensor, k, dim=2)
    max_values_with_indices = torch.stack((max_indices, max_values), dim=3)
    return max_values_with_indices


def visualize_grid_to_grid(i, mask, image, output_dir, grid_size=27, alpha=0.6):
    if not isinstance(grid_size, tuple):
        grid_size = (grid_size, grid_size)
    mask = mask.detach().cpu().numpy()
    mask = Image.fromarray(mask).resize((384, 384))
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    fig.tight_layout()

    ax[0].imshow(image)
    ax[0].axis('off')

    ax[1].imshow(image)
    im = ax[1].imshow(mask / np.max(mask), alpha=alpha, cmap='rainbow')
    ax[1].axis('off')
    cbar = fig.colorbar(im, ax=ax[1])
    cbar.set_label('Color Temperature')
    name = os.path.join(output_dir, "hot_image", f"{i}.png")
    plt.savefig(name)
    plt.close(fig)


def generate_square_subsequent_mask(sz):
    mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask


def generate_word_images(tokenizer, top_words_tensor, num, input_ids, embed_tokens, output_dir):
    num_top_words = top_words_tensor.shape[1]
    for i in range(num_top_words - num, num_top_words):
        fig, ax = plt.subplots()
        word_indices = top_words_tensor[0, i, :, 0].detach().cpu().numpy()
        probabilities = top_words_tensor[0, i, :, 1].detach().cpu().numpy()
        colors = plt.cm.viridis(probabilities)

        for j, (word_index, color, prob) in enumerate(zip(word_indices, colors, probabilities)):
            word = tokenizer.decode([int(word_index)])
            prob_text = f"{word}  P: {prob:.2f}"
            ax.text(0.5, 0.9 - j * 0.1, prob_text, color=color, ha='center', va='center', transform=ax.transAxes)
        ax.axis('off')
        ax.set_title('Top Words for Index {}'.format(i - num_top_words + num + 1))
        plt.savefig(os.path.join(output_dir, 'word', f"word_image_{i - num_top_words + num + 1}.png"))
        plt.close()


def generate_word_images_before(tokenizer, input_ids, tensor, num, top_words_tensor, output_dir):
    num_top_words = tensor.shape[2]
    result = tensor.mean(dim=1)  # [1, len, len]
    input_ids_fir = input_ids[input_ids != -200].unsqueeze(0)
    for i in range(num_top_words - num, num_top_words - 1):
        top1_indices = top_words_tensor[0, i, 0, 0].long()
        fig, ax = plt.subplots()
        result_1 = result[0, i, 0:input_ids.shape[1]]
        result_1 = result_1[input_ids.squeeze() != -200]
        if not i == num_top_words - num:
            result_2 = result[0, i, num_top_words - num + 1:i + 1]
            result_1 = torch.cat((result_1, result_2), dim=0)

        if not i == num_top_words - num:
            output_ids = top_words_tensor[0, num_top_words - num:i, 0, 0].unsqueeze(0).long()
            input_ids_fir = torch.cat((input_ids_fir, output_ids), dim=1)

        tv, ti = torch.topk(result_1.squeeze(), 8)
        tv = tv / torch.max(tv)
        probabilities = tv.detach().cpu().numpy()
        colors = plt.cm.viridis(probabilities)
        for j, (word_index, color, prob) in enumerate(zip(ti, colors, probabilities)):
            word = tokenizer.decode(input_ids_fir[0, word_index.item()])
            prob_text = f"{word}  P: {prob:.2f}"
            ax.text(0.5, 0.9 - j * 0.1, prob_text, color=color, ha='center', va='center', transform=ax.transAxes)
        ax.axis('off')
        ax.set_title(
            'similarities of output word  {}'.format(tokenizer.decode([top1_indices.detach().cpu().numpy()])))
        plt.savefig(os.path.join(output_dir, 'word_before', f"word_image_{i - (num_top_words - num - 1)}.png"))
        plt.close()


class Monitor:
    def __init__(self, args, model, llm_layers_index):
        self.model = model
        self.args = args
        self.input_ids = None
        self.image = None
        self.params = list(model.parameters())
        self.output = defaultdict(dict)
        self.attentions = []
        self.hidden = []
        self.logit = []
        self.image_token = []
        self.llm_layers_index = llm_layers_index
        self._register(llm_layers_index)

    def _register(self, llm_layers_index):
        def attention_hook(module, input, output):
            self.hidden.append(input[0])

        def output_hook(module, input, output):
            self.logit.append(output)

        def image_hook(module, input, output):
            self.image_token.append(output)

        mod = self.model
        mod.language_model.model.layers[llm_layers_index].register_forward_hook(attention_hook)
        mod.language_model.lm_head.register_forward_hook(output_hook)
        mod.connector.register_forward_hook(image_hook)

    def prepare_input(self):
        #  获得input_ids
        qs = self.args.query
        qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
        text_processor = TextPreprocess(self.model.tokenizer, self.args.conv_mode)
        msg = Message()
        msg.add_message(qs)
        result = text_processor(msg.messages, mode='eval')
        self.input_ids = result['input_ids'].unsqueeze(0).cuda()
        #  获得图片tensor
        data_args = self.model.config
        image_processor = self.model.vision_tower._image_processor
        image_processor = ImagePreprocess(image_processor, data_args)
        image_files = self.args.image_file.split(self.args.sep)
        images = load_images(image_files)[0]
        images_tensor = image_processor(images)
        image_tensor = 255 * (images_tensor - images_tensor.min()) / (images_tensor.max() - images_tensor.min())
        image_tensor = image_tensor.clamp(0, 255)
        image_tensor = image_tensor.byte()
        to_pil = ToPILImage()
        self.image = to_pil(image_tensor).convert('RGB')
        self.model.cuda()
        self.logit = F.softmax(torch.cat(self.logit, dim=1), dim=2)
        hidden_tensor = torch.cat(self.hidden, dim=1)
        length = hidden_tensor.shape[1]
        attention_mask = torch.unsqueeze(
            torch.unsqueeze(generate_square_subsequent_mask(length).clone().detach(), dim=0),
            dim=0).cuda()

        self.hidden = self.model.language_model.model.layers[self.llm_layers_index](hidden_tensor,
                                                                                    output_attentions=True,
                                                                                    attention_mask=attention_mask)
        self.image_token = self.image_token[0].squeeze()
        self.image_token = torch.cat((torch.zeros(1, 2560).cuda(), self.image_token), dim=0)

    def get_output(self, output_dir='results/'):
        print("Starting visualization...")
        self.prepare_input()

        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        output_dir = os.path.join(output_dir, f"run_{timestamp}")
        os.makedirs(output_dir, exist_ok=True)

        os.makedirs(os.path.join(output_dir, 'word'), exist_ok=True)
        os.makedirs(os.path.join(output_dir, 'word_before'), exist_ok=True)
        os.makedirs(os.path.join(output_dir, 'hot_image'), exist_ok=True)

        num = self.logit.shape[1] - 726 - len(self.input_ids[0])
        result = extract_max_values_and_indices(self.logit, 8)
        generate_word_images(self.model.tokenizer, result, num, self.input_ids,
                             self.model.language_model.model.embed_tokens.weight, output_dir)

        generate_word_images_before(self.model.tokenizer, self.input_ids, self.hidden[1], num, result, output_dir)

        result_top1 = result[0, :, 0, 0].squeeze()
        for i in range(len(result_top1) - num, len(result_top1)):
            word_id = result_top1[i]
            word_id_tensor = torch.tensor([word_id]).long().cuda()
            word_vector = self.model.language_model.model.embed_tokens(word_id_tensor).squeeze().detach()
            vector_expanded = word_vector.unsqueeze(0).expand_as(self.image_token)
            vector_norm = F.normalize(vector_expanded, p=2, dim=1)
            matrix_norm = F.normalize(self.image_token, p=2, dim=1)
            cosine_similarities = torch.sum(vector_norm * matrix_norm, dim=1)
            normalized_similarities = F.softmax(cosine_similarities, dim=0)
            visualize_grid_to_grid('hot_image_' + str(i - (len(result_top1) - num) + 1),
                                   normalized_similarities.view(27, 27),
                                   self.image, output_dir)
        print("Completed visualization.")