|
import os |
|
import torch |
|
from collections import OrderedDict |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig |
|
|
|
from .modeling_tinyllava import TinyLlavaForConditionalGeneration |
|
from .configuration_tinyllava import TinyLlavaConfig |
|
|
|
def load_base_ckp_for_lora(ckp_path): |
|
ckp = torch.load(ckp_path, map_location=torch.device('cpu')) |
|
new_ckp = OrderedDict() |
|
for k, v in ckp.items(): |
|
new_k = k.replace('.base_layer', '') |
|
new_ckp[new_k] = v |
|
return new_ckp |
|
|
|
|
|
def load_pretrained_model(model_name_or_path, load_type='hf', load_8bit=False, load_4bit=False, device_map="auto", |
|
device="cuda", **kwargs): |
|
kwargs = {"device_map": device_map, **kwargs} |
|
if device != "cuda": |
|
kwargs['device_map'] = {"": device} |
|
|
|
if load_8bit: |
|
kwargs['load_in_8bit'] = True |
|
elif load_4bit: |
|
kwargs['load_in_4bit'] = True |
|
kwargs['quantization_config'] = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4' |
|
) |
|
else: |
|
kwargs['torch_dtype'] = torch.float16 |
|
if model_name_or_path is not None and 'lora' not in model_name_or_path: |
|
model = TinyLlavaForConditionalGeneration.from_pretrained(model_name_or_path,low_cpu_mem_usage=True) |
|
|
|
elif model_name_or_path is not None and 'lora' in model_name_or_path: |
|
if os.path.exists(os.path.join(model_name_or_path, 'adapter_config.json')): |
|
model_config = TinyLlavaConfig.from_pretrained(model_name_or_path) |
|
model = TinyLlavaForConditionalGeneration(model_config) |
|
language_model_ckp_path = os.path.join(model_name_or_path, 'language_model/pytorch_model.bin') |
|
language_model_ckp = load_base_ckp_for_lora(language_model_ckp_path) |
|
model.language_model.load_state_dict(language_model_ckp) |
|
vision_tower_ckp_path = os.path.join(model_name_or_path, 'vision_tower/pytorch_model.bin') |
|
vision_tower_ckp = load_base_ckp_for_lora(vision_tower_ckp_path) |
|
model.vision_tower._vision_tower.load_state_dict(vision_tower_ckp) |
|
connector_ckp_path = os.path.join(model_name_or_path, 'connector/pytorch_model.bin') |
|
connector_ckp = load_base_ckp_for_lora(connector_ckp_path) |
|
model.connector.load_state_dict(connector_ckp, strict=False) |
|
model.to(torch.float16) |
|
from peft import PeftModel |
|
print('Loading LoRA weights...') |
|
model = PeftModel.from_pretrained(model, model_name_or_path) |
|
print('Merging LoRA weights...') |
|
model = model.merge_and_unload() |
|
print('Model is loaded...') |
|
|
|
image_processor = model.vision_tower._image_processor |
|
context_len = getattr(model.config, 'max_sequence_length', 2048) |
|
|
|
tokenizer = model.tokenizer |
|
|
|
return model, tokenizer, image_processor, context_len |
|
|