Camil Ziane
init space
74b17e0
raw
history blame
2.82 kB
import os
from PIL import Image, ImageFile
import torch
import ast
from ..utils.data_utils import *
ImageFile.LOAD_TRUNCATED_IMAGES = True
# 可能imagepreprocess需要继承一个huggingface的图像处理类?提供from_pretrained方法
class ImagePreprocess:
def __init__(self, image_processor, data_args={}):
self.image_aspect_ratio = getattr(data_args, 'image_aspect_ratio', None)
self.image_processor = image_processor
self.image_grid_pinpoints = getattr(data_args, 'image_grid_pinpoints', None)
def __call__(self, image):
if self.image_aspect_ratio == 'pad':
image = self.expand2square(image, tuple(int(x * 255) for x in self.image_processor.image_mean))
elif self.image_aspect_ratio == "anyres":
image = self.process_anyres_image(image, self.image_processor, self.image_grid_pinpoints)
return image
image = self.image_processor(image, return_tensors='pt')['pixel_values'][0]
return image
@classmethod
def expand2square(cls, pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
@classmethod
def process_anyres_image(cls, image, processor, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
patches = divide_to_patches(image_padded, processor.crop_size['height'])
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
image_patches = [image_original_resize] + patches
image_patches = [processor(image_patch, return_tensors='pt')['pixel_values'][0]
for image_patch in image_patches]
return torch.stack(image_patches, dim=0)