|
from dataclasses import dataclass |
|
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union |
|
from packaging import version |
|
|
|
from .formatter import EmptyFormatter, StringFormatter |
|
from .base import Template |
|
from .formatter import Formatter |
|
from . import register_template |
|
from ...utils.constants import * |
|
|
|
from transformers import PreTrainedTokenizer |
|
import torch |
|
import tokenizers |
|
|
|
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse('0.14') |
|
|
|
system = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." |
|
|
|
@register_template('llama') |
|
@dataclass |
|
class LlamaTemplate(Template): |
|
format_image_token: "Formatter" = StringFormatter(slot="<image>\n{{content}}") |
|
format_user: "Formatter" = StringFormatter(slot="USER" + ": " + "{{content}}" + " ") |
|
format_assistant: "Formatter" = StringFormatter(slot="ASSISTANT" + ": " + "{{content}}" + "</s>") |
|
system: "Formatter" = EmptyFormatter(slot=system+" ") |
|
separator: "Formatter" = EmptyFormatter(slot=[' ASSISTANT: ', '</s>']) |
|
|
|
def _make_masks(self, labels, tokenizer, sep, eos_token_length, rounds): |
|
cur_len = 1 |
|
eos_token_length = 1 |
|
bos_token_length = 1 |
|
labels[:cur_len] = IGNORE_INDEX |
|
for i, rou in enumerate(rounds): |
|
if rou == "": |
|
break |
|
parts = rou.split(sep) |
|
if len(parts) != 2: |
|
break |
|
parts[0] += sep |
|
round_len = len(self.tokenizer_image_token(rou, tokenizer)) + eos_token_length - bos_token_length |
|
instruction_len = len(self.tokenizer_image_token(parts[0], tokenizer)) - 1 - bos_token_length |
|
if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14: |
|
round_len -= 1 |
|
instruction_len -= 1 |
|
labels[cur_len : cur_len + instruction_len] = IGNORE_INDEX |
|
cur_len += round_len |
|
|
|
labels[cur_len:] = IGNORE_INDEX |
|
return labels, cur_len |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|