Camil Ziane
init space
74b17e0
raw
history blame
5.67 kB
import argparse
import time
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from tinyllava.utils import *
from tinyllava.data import *
from tinyllava.model import *
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import math
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
# Custom dataset class
class CustomDataset(Dataset):
def __init__(self, questions, image_folder, text_processor, image_processor):
self.questions = questions
self.image_folder = image_folder
self.text_processor = text_processor
self.image_processor = image_processor
def __getitem__(self, index):
line = self.questions[index]
image_file = line["image"]
qs = line["text"]
image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB')
image_tensor = self.image_processor(image)
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
msg = Message()
msg.add_message(qs)
#print(prompt)
result = self.text_processor(msg.messages, mode='eval')
input_ids = result['input_ids']
return input_ids, image_tensor, image.size
def __len__(self):
return len(self.questions)
def collate_fn(batch):
input_ids, image_tensors, image_sizes = zip(*batch)
input_ids = torch.stack(input_ids, dim=0)
image_tensors = torch.stack(image_tensors, dim=0)
return input_ids, image_tensors, image_sizes
# DataLoader
def create_data_loader(questions, image_folder, text_processor, image_processor, batch_size=1, num_workers=4):
assert batch_size == 1, "batch_size must be 1"
dataset = CustomDataset(questions, image_folder, text_processor, image_processor)
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn)
return data_loader
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model, tokenizer, image_processor, context_len = load_pretrained_model(model_path)
text_processor = TextPreprocess(tokenizer, args.conv_mode)
#model.config.image_aspect_ratio = 'pad'
data_args = model.config
image_processor = ImagePreprocess(image_processor, data_args)
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
data_loader = create_data_loader(questions, args.image_folder, text_processor, image_processor)
# print("Tokenizer's eos token: ", tokenizer.eos_token)
model.to(device='cuda')
for (input_ids, image_tensor, image_sizes), line in tqdm(zip(data_loader, questions), total=len(questions)):
idx = line["question_id"]
cur_prompt = line["text"]
# keywords = [tokenizer.eos_token]
# stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
input_ids = input_ids.to(device='cuda', non_blocking=True)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
pad_token_id=tokenizer.pad_token_id,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=args.max_new_tokens,
# stopping_criteria=[stopping_criteria],
image_sizes=image_sizes,
use_cache=True)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
# print("Printing outputs")
# print(outputs)
# time.sleep(5)
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"prompt": cur_prompt,
"text": outputs,
"answer_id": ans_id,
"model_id": args.model_base,
"metadata": {}}) + "\n")
# ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llama")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=128)
parser.add_argument("--image_aspect_ratio", type=str, default="pad")
args = parser.parse_args()
eval_model(args)