|
import argparse |
|
import time |
|
|
|
import torch |
|
import os |
|
import json |
|
from tqdm import tqdm |
|
import shortuuid |
|
|
|
from tinyllava.utils import * |
|
from tinyllava.data import * |
|
from tinyllava.model import * |
|
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
from PIL import Image |
|
import math |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
|
|
class CustomDataset(Dataset): |
|
def __init__(self, questions, image_folder, text_processor, image_processor): |
|
self.questions = questions |
|
self.image_folder = image_folder |
|
self.text_processor = text_processor |
|
self.image_processor = image_processor |
|
|
|
def __getitem__(self, index): |
|
line = self.questions[index] |
|
image_file = line["image"] |
|
qs = line["text"] |
|
|
|
image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB') |
|
image_tensor = self.image_processor(image) |
|
|
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs |
|
msg = Message() |
|
msg.add_message(qs) |
|
|
|
result = self.text_processor(msg.messages, mode='eval') |
|
input_ids = result['input_ids'] |
|
|
|
return input_ids, image_tensor, image.size |
|
|
|
def __len__(self): |
|
return len(self.questions) |
|
|
|
|
|
def collate_fn(batch): |
|
input_ids, image_tensors, image_sizes = zip(*batch) |
|
input_ids = torch.stack(input_ids, dim=0) |
|
image_tensors = torch.stack(image_tensors, dim=0) |
|
return input_ids, image_tensors, image_sizes |
|
|
|
|
|
|
|
def create_data_loader(questions, image_folder, text_processor, image_processor, batch_size=1, num_workers=4): |
|
assert batch_size == 1, "batch_size must be 1" |
|
dataset = CustomDataset(questions, image_folder, text_processor, image_processor) |
|
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn) |
|
return data_loader |
|
|
|
|
|
def eval_model(args): |
|
|
|
disable_torch_init() |
|
model_path = os.path.expanduser(args.model_path) |
|
model, tokenizer, image_processor, context_len = load_pretrained_model(model_path) |
|
|
|
text_processor = TextPreprocess(tokenizer, args.conv_mode) |
|
|
|
data_args = model.config |
|
image_processor = ImagePreprocess(image_processor, data_args) |
|
|
|
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
answers_file = os.path.expanduser(args.answers_file) |
|
os.makedirs(os.path.dirname(answers_file), exist_ok=True) |
|
ans_file = open(answers_file, "w") |
|
|
|
|
|
data_loader = create_data_loader(questions, args.image_folder, text_processor, image_processor) |
|
|
|
model.to(device='cuda') |
|
for (input_ids, image_tensor, image_sizes), line in tqdm(zip(data_loader, questions), total=len(questions)): |
|
idx = line["question_id"] |
|
cur_prompt = line["text"] |
|
|
|
|
|
input_ids = input_ids.to(device='cuda', non_blocking=True) |
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True), |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=True if args.temperature > 0 else False, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
num_beams=args.num_beams, |
|
max_new_tokens=args.max_new_tokens, |
|
|
|
image_sizes=image_sizes, |
|
use_cache=True) |
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
|
|
|
|
|
|
ans_id = shortuuid.uuid() |
|
ans_file.write(json.dumps({"question_id": idx, |
|
"prompt": cur_prompt, |
|
"text": outputs, |
|
"answer_id": ans_id, |
|
"model_id": args.model_base, |
|
"metadata": {}}) + "\n") |
|
|
|
ans_file.close() |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-folder", type=str, default="") |
|
parser.add_argument("--question-file", type=str, default="tables/question.jsonl") |
|
parser.add_argument("--answers-file", type=str, default="answer.jsonl") |
|
parser.add_argument("--conv-mode", type=str, default="llama") |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--temperature", type=float, default=0.2) |
|
parser.add_argument("--top_p", type=float, default=None) |
|
parser.add_argument("--num_beams", type=int, default=1) |
|
parser.add_argument("--max_new_tokens", type=int, default=128) |
|
parser.add_argument("--image_aspect_ratio", type=str, default="pad") |
|
args = parser.parse_args() |
|
|
|
eval_model(args) |
|
|