|
import argparse |
|
import re |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
import torch |
|
from transformers import PreTrainedModel |
|
|
|
from tinyllava.utils import * |
|
from tinyllava.data import * |
|
from tinyllava.model import * |
|
|
|
|
|
def image_parser(args): |
|
out = args.image_file.split(args.sep) |
|
return out |
|
|
|
|
|
def load_image(image_file): |
|
if image_file.startswith("http") or image_file.startswith("https"): |
|
response = requests.get(image_file) |
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
else: |
|
image = Image.open(image_file).convert("RGB") |
|
return image |
|
|
|
|
|
def load_images(image_files): |
|
out = [] |
|
for image_file in image_files: |
|
image = load_image(image_file) |
|
out.append(image) |
|
return out |
|
|
|
|
|
def eval_model(args): |
|
|
|
disable_torch_init() |
|
|
|
if args.model_path is not None: |
|
model, tokenizer, image_processor, context_len = load_pretrained_model(args.model_path) |
|
else: |
|
assert args.model is not None, 'model_path or model must be provided' |
|
model = args.model |
|
if hasattr(model.config, "max_sequence_length"): |
|
context_len = model.config.max_sequence_length |
|
else: |
|
context_len = 2048 |
|
tokenizer = model.tokenizer |
|
image_processor = model.vision_tower._image_processor |
|
qs = args.query |
|
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs |
|
|
|
text_processor = TextPreprocess(tokenizer, args.conv_mode) |
|
data_args = model.config |
|
image_processor = ImagePreprocess(image_processor, data_args) |
|
model.cuda() |
|
|
|
msg = Message() |
|
msg.add_message(qs) |
|
|
|
result = text_processor(msg.messages, mode='eval') |
|
input_ids = result['input_ids'] |
|
prompt = result['prompt'] |
|
input_ids = input_ids.unsqueeze(0).cuda() |
|
|
|
|
|
image_files = image_parser(args) |
|
images = load_images(image_files)[0] |
|
images_tensor = image_processor(images) |
|
images_tensor = images_tensor.unsqueeze(0).half().cuda() |
|
|
|
|
|
|
|
stop_str = text_processor.template.separator.apply()[1] |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=images_tensor, |
|
do_sample=True if args.temperature > 0 else False, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
num_beams=args.num_beams, |
|
pad_token_id=tokenizer.pad_token_id, |
|
max_new_tokens=args.max_new_tokens, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria], |
|
) |
|
|
|
outputs = tokenizer.batch_decode( |
|
output_ids, skip_special_tokens=True |
|
)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[: -len(stop_str)] |
|
outputs = outputs.strip() |
|
print(outputs) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default=None) |
|
parser.add_argument("--model", type=PreTrainedModel, default=None) |
|
parser.add_argument("--image-file", type=str, required=True) |
|
parser.add_argument("--query", type=str, required=True) |
|
parser.add_argument("--conv-mode", type=str, default=None) |
|
parser.add_argument("--sep", type=str, default=",") |
|
parser.add_argument("--temperature", type=float, default=0.2) |
|
parser.add_argument("--top_p", type=float, default=None) |
|
parser.add_argument("--num_beams", type=int, default=1) |
|
parser.add_argument("--max_new_tokens", type=int, default=512) |
|
args = parser.parse_args() |
|
|
|
eval_model(args) |