Camil Ziane
init space
74b17e0
raw
history blame
3.29 kB
import torch
import torch.nn as nn
from . import register_connector
from .base import Connector
import torch
from einops import rearrange, repeat
from einops_exts import rearrange_many
from torch import einsum
class PerceiverResampler(nn.Module):
def __init__(self, config):
super().__init__()
dim = config.hidden_size
depth=config.num_resampler_layers
num_latents=config.num_queries
self.latents = nn.Parameter(torch.randn(num_latents, dim))
self.layers = nn.ModuleList([])
self.linear = nn.Linear(config.vision_hidden_size, config.hidden_size)
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=64, heads=8),
FeedForward(dim=dim, mult=4),
]
)
)
self.norm = nn.LayerNorm(dim)
def forward(self, x):
b, v = x.shape[:2]
x = self.linear(x)
# blocks
latents = repeat(self.latents, "n d -> b T n d", b=b, T=1)
x = x.unsqueeze(1)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
return self.norm(latents).squeeze(1)
@register_connector('resampler')
class ResamplerConnector(Connector):
def __init__(self, config):
super().__init__()
self._connector = PerceiverResampler(config)
# =================================resampler related =================================
def exists(val):
return val is not None
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm_media = nn.LayerNorm(dim)
self.norm_latents = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, T, n1, D)
latent (torch.Tensor): latent features
shape (b, T, n2, D)
"""
x = self.norm_media(x)
latents = self.norm_latents(latents)
h = self.heads
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h)
q = q * self.scale
# attention
sim = einsum("... i d, ... j d -> ... i j", q, k)
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
out = einsum("... i j, ... j d -> ... i d", attn, v)
out = rearrange(out, "b h t n d -> b t n (h d)", h=h)
return self.to_out(out)