|
import torch |
|
import torch.nn as nn |
|
from . import register_connector |
|
from .base import Connector |
|
import torch |
|
from einops import rearrange, repeat |
|
from einops_exts import rearrange_many |
|
from torch import einsum |
|
|
|
|
|
|
|
class PerceiverResampler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
dim = config.hidden_size |
|
depth=config.num_resampler_layers |
|
num_latents=config.num_queries |
|
self.latents = nn.Parameter(torch.randn(num_latents, dim)) |
|
self.layers = nn.ModuleList([]) |
|
self.linear = nn.Linear(config.vision_hidden_size, config.hidden_size) |
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.ModuleList( |
|
[ |
|
PerceiverAttention(dim=dim, dim_head=64, heads=8), |
|
FeedForward(dim=dim, mult=4), |
|
] |
|
) |
|
) |
|
|
|
self.norm = nn.LayerNorm(dim) |
|
|
|
def forward(self, x): |
|
b, v = x.shape[:2] |
|
x = self.linear(x) |
|
|
|
latents = repeat(self.latents, "n d -> b T n d", b=b, T=1) |
|
x = x.unsqueeze(1) |
|
for attn, ff in self.layers: |
|
latents = attn(x, latents) + latents |
|
latents = ff(latents) + latents |
|
return self.norm(latents).squeeze(1) |
|
|
|
|
|
@register_connector('resampler') |
|
class ResamplerConnector(Connector): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self._connector = PerceiverResampler(config) |
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def FeedForward(dim, mult=4): |
|
inner_dim = int(dim * mult) |
|
return nn.Sequential( |
|
nn.LayerNorm(dim), |
|
nn.Linear(dim, inner_dim, bias=False), |
|
nn.GELU(), |
|
nn.Linear(inner_dim, dim, bias=False), |
|
) |
|
|
|
|
|
class PerceiverAttention(nn.Module): |
|
def __init__(self, *, dim, dim_head=64, heads=8): |
|
super().__init__() |
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
inner_dim = dim_head * heads |
|
|
|
self.norm_media = nn.LayerNorm(dim) |
|
self.norm_latents = nn.LayerNorm(dim) |
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) |
|
self.to_out = nn.Linear(inner_dim, dim, bias=False) |
|
|
|
def forward(self, x, latents): |
|
""" |
|
Args: |
|
x (torch.Tensor): image features |
|
shape (b, T, n1, D) |
|
latent (torch.Tensor): latent features |
|
shape (b, T, n2, D) |
|
""" |
|
x = self.norm_media(x) |
|
latents = self.norm_latents(latents) |
|
|
|
h = self.heads |
|
|
|
q = self.to_q(latents) |
|
kv_input = torch.cat((x, latents), dim=-2) |
|
k, v = self.to_kv(kv_input).chunk(2, dim=-1) |
|
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h) |
|
q = q * self.scale |
|
|
|
|
|
sim = einsum("... i d, ... j d -> ... i j", q, k) |
|
sim = sim - sim.amax(dim=-1, keepdim=True).detach() |
|
attn = sim.softmax(dim=-1) |
|
|
|
out = einsum("... i j, ... j d -> ... i d", attn, v) |
|
out = rearrange(out, "b h t n d -> b t n (h d)", h=h) |
|
return self.to_out(out) |
|
|
|
|