|
import tokenizers |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor |
|
|
|
from tinyllava.train.tinyllava_trainer import LLaVATrainer |
|
from tinyllava.training_recipe import TrainingRecipeFactory |
|
from tinyllava.utils import * |
|
from tinyllava.model import * |
|
from tinyllava.data.dataset import make_supervised_data_module |
|
|
|
def load_settings(model_arguments, data_arguments, training_arguments): |
|
model_arguments.tune_type_connector = training_arguments.tune_type_connector |
|
model_arguments.tune_type_llm = training_arguments.tune_type_llm |
|
model_arguments.tune_type_vision_tower = training_arguments.tune_type_vision_tower |
|
model_arguments.image_aspect_ratio = data_arguments.image_aspect_ratio |
|
|
|
|
|
|
|
|
|
|
|
def train(): |
|
|
|
|
|
parser = transformers.HfArgumentParser( |
|
(ModelArguments, DataArguments, TrainingArguments)) |
|
model_arguments, data_arguments, training_arguments = parser.parse_args_into_dataclasses() |
|
logger_setting(getattr(training_arguments, 'output_dir', None)) |
|
training_recipe = TrainingRecipeFactory(training_arguments.training_recipe)(training_arguments) |
|
load_settings(model_arguments, data_arguments, training_arguments) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(training_arguments.pretrained_model_path, trust_remote_code=True) |
|
config = model.config |
|
tokenizer = AutoTokenizer.from_pretrained(training_arguments.pretrained_model_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side) |
|
model.tokenizer = tokenizer |
|
model = training_recipe(model) |
|
model.config.use_cache = False |
|
model.config.image_aspect_ratio = data_arguments.image_aspect_ratio |
|
data_arguments.image_processor = AutoImageProcessor.from_pretrained(config.vision_model_name_or_path) |
|
data_arguments.is_multimodal = True |
|
data_module = make_supervised_data_module(tokenizer=tokenizer, |
|
data_args=data_arguments) |
|
log_trainable_params(model) |
|
trainer = LLaVATrainer(model=model, |
|
tokenizer=tokenizer, |
|
args=training_arguments, |
|
**data_module) |
|
|
|
trainer.train() |
|
|
|
training_recipe.save(model, trainer) |
|
|
|
if __name__ == "__main__": |
|
train() |
|
|