Spaces:
Runtime error
Runtime error
import os | |
from PIL import Image, ImageFile | |
import torch | |
import ast | |
from ..utils.data_utils import * | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
# 可能imagepreprocess需要继承一个huggingface的图像处理类?提供from_pretrained方法 | |
class ImagePreprocess: | |
def __init__(self, image_processor, data_args={}): | |
self.image_aspect_ratio = getattr(data_args, 'image_aspect_ratio', None) | |
self.image_processor = image_processor | |
self.image_grid_pinpoints = getattr(data_args, 'image_grid_pinpoints', None) | |
def __call__(self, image): | |
if self.image_aspect_ratio == 'pad': | |
image = self.expand2square(image, tuple(int(x * 255) for x in self.image_processor.image_mean)) | |
elif self.image_aspect_ratio == "anyres": | |
image = self.process_anyres_image(image, self.image_processor, self.image_grid_pinpoints) | |
return image | |
image = self.image_processor(image, return_tensors='pt')['pixel_values'][0] | |
return image | |
def expand2square(cls, pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def process_anyres_image(cls, image, processor, grid_pinpoints): | |
""" | |
Process an image with variable resolutions. | |
Args: | |
image (PIL.Image.Image): The input image to be processed. | |
processor: The image processor object. | |
grid_pinpoints (str): A string representation of a list of possible resolutions. | |
Returns: | |
torch.Tensor: A tensor containing the processed image patches. | |
""" | |
if type(grid_pinpoints) is list: | |
possible_resolutions = grid_pinpoints | |
else: | |
possible_resolutions = ast.literal_eval(grid_pinpoints) | |
best_resolution = select_best_resolution(image.size, possible_resolutions) | |
image_padded = resize_and_pad_image(image, best_resolution) | |
patches = divide_to_patches(image_padded, processor.crop_size['height']) | |
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge'])) | |
image_patches = [image_original_resize] + patches | |
image_patches = [processor(image_patch, return_tensors='pt')['pixel_values'][0] | |
for image_patch in image_patches] | |
return torch.stack(image_patches, dim=0) | |