Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union | |
from packaging import version | |
from .formatter import EmptyFormatter, StringFormatter | |
from .base import Template | |
from .formatter import Formatter | |
from . import register_template | |
from ...utils.constants import * | |
from transformers import PreTrainedTokenizer | |
import torch | |
import tokenizers | |
system = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." | |
class GemmaTemplate(Template): | |
format_image_token: "Formatter" = StringFormatter(slot="<image>\n{{content}}") | |
format_user: "Formatter" = StringFormatter(slot="USER" + ": " + "{{content}}" + " ") | |
format_assistant: "Formatter" = StringFormatter(slot="ASSISTANT" + ": " + "{{content}}" + "<eos>") | |
system: "Formatter" = EmptyFormatter(slot=system+" ") | |
separator: "Formatter" = EmptyFormatter(slot=[' ASSISTANT: ', '<eos>']) | |
def _make_masks(self, labels, tokenizer, sep, eos_token_length, rounds): | |
cur_len = 1 # bos | |
eos_token_length = 1 | |
bos_token_length = 1 | |
labels[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
round_len = len(self.tokenizer_image_token(rou, tokenizer)) + eos_token_length - bos_token_length | |
instruction_len = len(self.tokenizer_image_token(parts[0], tokenizer)) - 1 - bos_token_length | |
labels[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
labels[cur_len:] = IGNORE_INDEX | |
return labels, cur_len | |