Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from collections import OrderedDict | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | |
from .modeling_tinyllava import TinyLlavaForConditionalGeneration | |
from .configuration_tinyllava import TinyLlavaConfig | |
def load_base_ckp_for_lora(ckp_path): | |
ckp = torch.load(ckp_path, map_location=torch.device('cpu')) | |
new_ckp = OrderedDict() | |
for k, v in ckp.items(): | |
new_k = k.replace('.base_layer', '') | |
new_ckp[new_k] = v | |
return new_ckp | |
def load_pretrained_model(model_name_or_path, load_type='hf', load_8bit=False, load_4bit=False, device_map="auto", | |
device="cuda", **kwargs): | |
kwargs = {"device_map": device_map, **kwargs} | |
if device != "cuda": | |
kwargs['device_map'] = {"": device} | |
if load_8bit: | |
kwargs['load_in_8bit'] = True | |
elif load_4bit: | |
kwargs['load_in_4bit'] = True | |
kwargs['quantization_config'] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type='nf4' | |
) | |
else: | |
kwargs['torch_dtype'] = torch.float16 | |
if model_name_or_path is not None and 'lora' not in model_name_or_path: | |
model = TinyLlavaForConditionalGeneration.from_pretrained(model_name_or_path,low_cpu_mem_usage=True) | |
elif model_name_or_path is not None and 'lora' in model_name_or_path: | |
if os.path.exists(os.path.join(model_name_or_path, 'adapter_config.json')): | |
model_config = TinyLlavaConfig.from_pretrained(model_name_or_path) | |
model = TinyLlavaForConditionalGeneration(model_config) | |
language_model_ckp_path = os.path.join(model_name_or_path, 'language_model/pytorch_model.bin') | |
language_model_ckp = load_base_ckp_for_lora(language_model_ckp_path) | |
model.language_model.load_state_dict(language_model_ckp) | |
vision_tower_ckp_path = os.path.join(model_name_or_path, 'vision_tower/pytorch_model.bin') | |
vision_tower_ckp = load_base_ckp_for_lora(vision_tower_ckp_path) | |
model.vision_tower._vision_tower.load_state_dict(vision_tower_ckp) | |
connector_ckp_path = os.path.join(model_name_or_path, 'connector/pytorch_model.bin') | |
connector_ckp = load_base_ckp_for_lora(connector_ckp_path) | |
model.connector.load_state_dict(connector_ckp, strict=False) | |
model.to(torch.float16) | |
from peft import PeftModel | |
print('Loading LoRA weights...') | |
model = PeftModel.from_pretrained(model, model_name_or_path) | |
print('Merging LoRA weights...') | |
model = model.merge_and_unload() | |
print('Model is loaded...') | |
image_processor = model.vision_tower._image_processor | |
context_len = getattr(model.config, 'max_sequence_length', 2048) | |
# tokenizer = AutoTokenizer.from_pretrained(model.config.llm_model_name_or_path, use_fast=False, padding_side="right") | |
tokenizer = model.tokenizer | |
#tokenizer.pad_token = tokenizer.eos_token | |
return model, tokenizer, image_processor, context_len | |