Spaces:
Runtime error
Runtime error
''' | |
@Description: | |
@Author: jiajunlong | |
@Date: 2024-06-19 19:30:17 | |
@LastEditTime: 2024-06-19 19:32:47 | |
@LastEditors: jiajunlong | |
''' | |
import argparse | |
import hashlib | |
import json | |
from pathlib import Path | |
import time | |
from threading import Thread | |
import logging | |
import gradio as gr | |
import torch | |
from transformers import TextIteratorStreamer | |
from tinyllava.utils import * | |
from tinyllava.data import * | |
from tinyllava.model import * | |
DEFAULT_MODEL_PATH = "cpu4dream/llava-small-OpenELM-AIMv2-0.6B" | |
block_css = """ | |
#buttons button { | |
min-width: min(120px,100%); | |
} | |
""" | |
title_markdown = """ | |
# Tiny Llava OpenELM-AIMv2 0.6B 🐛 | |
## Multimodal Image Question Answering on CPU | |
This space demonstrates the capabilities of the [cpu4dream/llava-small-OpenELM-AIMv2-0.6B](https://huggingface.co/cpu4dream/llava-small-OpenELM-AIMv2-0.6B) model, trained using the [TinyLLaVA Framework](https://github.com/TinyLLaVA/TinyLLaVA_Factory). | |
""" | |
tos_markdown = """ | |
### Terms of use | |
By using this service, users are required to agree to the following terms: | |
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. | |
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. | |
""" | |
learn_more_markdown = """ | |
### License | |
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. | |
""" | |
ack_markdown = """ | |
### Acknowledgement | |
The template for this web demo is from [LLaVA](https://github.com/haotian-liu/LLaVA), and we are very grateful to LLaVA for their open source contributions to the community! | |
""" | |
def regenerate(state, image_process_mode): | |
state.messages[-1]['value'] = None | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), "", None) | |
def clear_history(): | |
state = Message() | |
return (state, state.to_gradio_chatbot(), "", None) | |
def add_text(state, text, image, image_process_mode): | |
if len(text) <= 0 and image is None: | |
state.skip_next = True | |
return (state, state.to_gradio_chatbot(), "", None) | |
text = text[:1536] # Hard cut-off | |
if image is not None: | |
text = text[:1200] # Hard cut-off for images | |
if "<image>" not in text: | |
# text = '<Image><image></Image>' + text | |
text = text + "\n<image>" | |
if len(state.images) > 0: | |
state = Message() | |
state.add_image(image, len(state.messages)) | |
state.add_message(text, None) | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), "", None) | |
def load_demo(): | |
state = Message() | |
return state | |
def get_response(params): | |
input_ids = params["input_ids"] | |
prompt = params["prompt"] | |
images = params.get("images", None) | |
num_image_tokens = 0 | |
if images is not None and len(images) > 0: | |
if len(images) > 0: | |
# image = [load_image_from_base64(img) for img in images][0] | |
image = images[0][0] | |
image = image_processor(image) | |
image = image.unsqueeze(0).to(model.device, dtype=torch.float32) | |
num_image_tokens = getattr(model.vision_tower._vision_tower, "num_patches", 336) | |
else: | |
image = None | |
image_args = {"images": image} | |
else: | |
image = None | |
image_args = {} | |
temperature = float(params.get("temperature", 1.0)) | |
top_p = float(params.get("top_p", 1.0)) | |
max_context_length = getattr(model.config, "max_position_embeddings", 2048) | |
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) | |
stop_str = params.get("stop", None) | |
do_sample = True if temperature > 0.001 else False | |
logger.info(prompt) | |
input_ids = input_ids.unsqueeze(0).to(model.device) | |
# keywords = [stop_str] | |
# stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
streamer = TextIteratorStreamer( | |
tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15 | |
) | |
max_new_tokens = min( | |
max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens | |
) | |
if max_new_tokens < 1: | |
yield json.dumps( | |
{ | |
"text": prompt | |
+ "Exceeds max token length. Please start a new conversation, thanks.", | |
"error_code": 0, | |
} | |
).encode() + b"\0" | |
return | |
generate_kwargs = dict( | |
inputs=input_ids, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
streamer=streamer, | |
use_cache=True, | |
pad_token_id = tokenizer.eos_token_id, | |
**image_args, | |
) | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
logger.debug(prompt) | |
logger.debug(generate_kwargs) | |
generated_text = prompt | |
for new_text in streamer: | |
generated_text += new_text | |
# print(f"new_text:{new_text}") | |
if generated_text.endswith(stop_str): | |
generated_text = generated_text[: -len(stop_str)] | |
yield json.dumps({"text": generated_text, "error_code": 0}).encode() | |
def http_bot(state, temperature, top_p, max_new_tokens): | |
if state.skip_next: | |
# This generate call is skipped due to invalid inputs | |
yield (state, state.to_gradio_chatbot()) | |
return | |
images = state.images | |
result = text_processor(state.messages, mode='eval') | |
prompt = result['prompt'] | |
input_ids = result['input_ids'] | |
pload = { | |
"model": model_name, | |
"prompt": prompt, | |
"input_ids": input_ids, | |
"temperature": float(temperature), | |
"top_p": float(top_p), | |
"max_new_tokens": min(int(max_new_tokens), 1536), | |
"stop": ( | |
text_processor.template.separator.apply()[1] | |
), "images": images} | |
state.messages[-1]['value'] = "▌" | |
yield (state, state.to_gradio_chatbot()) | |
# for stream | |
output = get_response(pload) | |
for chunk in output: | |
if chunk: | |
data = json.loads(chunk.decode()) | |
if data["error_code"] == 0: | |
output = data["text"][len(prompt) :].strip() | |
state.messages[-1]['value'] = output + "▌" | |
yield (state, state.to_gradio_chatbot()) | |
else: | |
output = data["text"] + f" (error_code: {data['error_code']})" | |
state.messages[-1]['value'] = output | |
yield (state, state.to_gradio_chatbot()) | |
return | |
time.sleep(0.03) | |
state.messages[-1]['value'] = state.messages[-1]['value'][:-1] | |
yield (state, state.to_gradio_chatbot()) | |
def build_demo(): | |
textbox = gr.Textbox( | |
show_label=False, placeholder="Enter text and press ENTER", container=False | |
) | |
with gr.Blocks(title="TinyLLaVA", theme=gr.themes.Default(), css=block_css) as demo: | |
state = gr.State() | |
gr.Markdown(title_markdown) | |
with gr.Row(): | |
with gr.Column(scale=5): | |
with gr.Row(elem_id="Model ID"): | |
gr.Dropdown( | |
choices=[DEFAULT_MODEL_PATH.split('/')[-1]], | |
value=DEFAULT_MODEL_PATH.split('/')[-1], | |
interactive=True, | |
label="Model ID", | |
container=False, | |
) | |
imagebox = gr.Image(type="pil") | |
image_process_mode = gr.Radio( | |
["Crop", "Resize", "Pad", "Default"], | |
value="Default", | |
label="Preprocess for non-square image", | |
visible=False, | |
) | |
# cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
cur_dir = Path(__file__).parent | |
gr.Examples( | |
examples=[ | |
[ | |
f"{cur_dir}/examples/extreme_ironing.jpg", | |
"What is unusual about this image?", | |
], | |
[ | |
f"{cur_dir}/examples/waterview.jpg", | |
"What are the things I should be cautious about when I visit here?", | |
], | |
], | |
inputs=[imagebox, textbox], | |
) | |
with gr.Accordion("Parameters", open=False) as _: | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.2, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
top_p = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.7, | |
step=0.1, | |
interactive=True, | |
label="Top P", | |
) | |
max_output_tokens = gr.Slider( | |
minimum=0, | |
maximum=1024, | |
value=512, | |
step=64, | |
interactive=True, | |
label="Max output tokens", | |
) | |
with gr.Column(scale=8): | |
chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550) | |
with gr.Row(): | |
with gr.Column(scale=8): | |
textbox.render() | |
with gr.Column(scale=1, min_width=50): | |
submit_btn = gr.Button(value="Send", variant="primary") | |
with gr.Row(elem_id="buttons") as _: | |
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True) | |
clear_btn = gr.Button(value="🗑️ Clear", interactive=True) | |
gr.Markdown(tos_markdown) | |
gr.Markdown(learn_more_markdown) | |
gr.Markdown(ack_markdown) | |
regenerate_btn.click( | |
regenerate, | |
[state, image_process_mode], | |
[state, chatbot, textbox, imagebox], | |
queue=False, | |
).then( | |
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
) | |
clear_btn.click( | |
clear_history, None, [state, chatbot, textbox, imagebox], queue=False | |
) | |
textbox.submit( | |
add_text, | |
[state, textbox, imagebox, image_process_mode], | |
[state, chatbot, textbox, imagebox], | |
queue=False, | |
).then( | |
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
) | |
submit_btn.click( | |
add_text, | |
[state, textbox, imagebox, image_process_mode], | |
[state, chatbot, textbox, imagebox], | |
queue=False, | |
).then( | |
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot] | |
) | |
demo.load(load_demo, None, [state], queue=False) | |
return demo | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default=None) | |
parser.add_argument("--port", type=int, default=None) | |
parser.add_argument("--share", default=None) | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--conv-mode", type=str, default="phi") | |
parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH) | |
parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_PATH.split('/')[-1]) | |
parser.add_argument("--load-8bit", action="store_true") | |
parser.add_argument("--load-4bit", action="store_true") | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", | |
) | |
logger = logging.getLogger(__name__) | |
logger.info(gr.__version__) | |
args = parse_args() | |
model_name = args.model_name | |
# DEFAULT_MODEL_PATH = args.model_path | |
model, tokenizer, image_processor, context_len = load_pretrained_model( | |
args.model_path, | |
load_4bit=args.load_4bit, | |
load_8bit=args.load_8bit | |
) | |
model.to(args.device) | |
model =model.to(torch.float32) | |
image_processor = ImagePreprocess(image_processor, model.config) | |
text_processor = TextPreprocess(tokenizer, args.conv_mode) | |
demo = build_demo() | |
demo.queue() | |
demo.launch(server_name=args.host, server_port=args.port, share=args.share) | |