Spaces:
Runtime error
Runtime error
''' | |
@Description: | |
@Author: jiajunlong | |
@Date: 2024-06-19 19:30:17 | |
@LastEditTime: 2024-06-19 19:32:47 | |
@LastEditors: jiajunlong | |
''' | |
import argparse | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import torch | |
from transformers import TextStreamer | |
from tinyllava.utils import * | |
from tinyllava.data import * | |
from tinyllava.model import * | |
def load_image(image_file): | |
if image_file.startswith('http://') or image_file.startswith('https://'): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert('RGB') | |
else: | |
image = Image.open(image_file).convert('RGB') | |
return image | |
def main(args): | |
# Model | |
disable_torch_init() | |
if args.model_path is not None: | |
model, tokenizer, image_processor, context_len = load_pretrained_model(model_name_or_path=args.model_path, load_8bit=args.load_8bit, load_4bit=args.load_4bit, device=args.device) | |
else: | |
assert args.model is not None, 'model_path or model must be provided' | |
model = args.model | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
tokenizer = model.tokenizer | |
image_processor = model.vision_tower._image_processor | |
text_processor = TextPreprocess(tokenizer, args.conv_mode) | |
data_args = model.config | |
image_processor = ImagePreprocess(image_processor, data_args) | |
model.to(args.device) | |
if getattr(text_processor.template, 'role', None) is None: | |
roles = ['USER', 'ASSISTANT'] | |
else: | |
roles = text_processor.template.role.apply() | |
msg = Message() | |
image = load_image(args.image_file) | |
# Similar operation in model_worker.py | |
image_tensor = image_processor(image) | |
image_tensor = image_tensor.unsqueeze(0).to(model.device, dtype=torch.float16) | |
while True: | |
try: | |
inp = input(f"{roles[0]}: ") | |
except EOFError: | |
inp = "" | |
if not inp: | |
print("exit...") | |
break | |
print(f"{roles[1]}: ", end="") | |
if image is not None: | |
# first message | |
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp | |
msg.add_message(inp) | |
image = None | |
else: | |
# later messages | |
msg.add_message(inp) | |
result = text_processor(msg.messages, mode='eval') | |
prompt = result['prompt'] | |
input_ids = result['input_ids'].unsqueeze(0).to(model.device) | |
# stop_str = text_processor.template.separator.apply()[1] | |
# keywords = [stop_str] | |
# stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=image_tensor, | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
max_new_tokens=args.max_new_tokens, | |
streamer=streamer, | |
use_cache=True, | |
pad_token_id = tokenizer.eos_token_id, | |
# stopping_criteria=[stopping_criteria] | |
) | |
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() | |
msg.messages[-1]['value'] = outputs | |
if args.debug: | |
print("\n", {"prompt": prompt, "outputs": outputs}, "\n") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model-path", type=str, default="tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B") | |
parser.add_argument("--model", type=str, default=None) | |
parser.add_argument("--image-file", type=str, required=True) | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--conv-mode", type=str, default='phi') | |
parser.add_argument("--temperature", type=float, default=0.2) | |
parser.add_argument("--max-new-tokens", type=int, default=512) | |
parser.add_argument("--load-8bit", action="store_true") | |
parser.add_argument("--load-4bit", action="store_true") | |
parser.add_argument("--debug", action="store_true") | |
args = parser.parse_args() | |
main(args) | |