Spaces:
Runtime error
Runtime error
import tokenizers | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor | |
from tinyllava.train.tinyllava_trainer import LLaVATrainer | |
from tinyllava.training_recipe import TrainingRecipeFactory | |
from tinyllava.utils import * | |
from tinyllava.model import * | |
from tinyllava.data.dataset import make_supervised_data_module | |
def load_settings(model_arguments, data_arguments, training_arguments): | |
model_arguments.tune_type_connector = training_arguments.tune_type_connector | |
model_arguments.tune_type_llm = training_arguments.tune_type_llm | |
model_arguments.tune_type_vision_tower = training_arguments.tune_type_vision_tower | |
model_arguments.image_aspect_ratio = data_arguments.image_aspect_ratio | |
def train(): | |
# load argument | |
parser = transformers.HfArgumentParser( | |
(ModelArguments, DataArguments, TrainingArguments)) | |
model_arguments, data_arguments, training_arguments = parser.parse_args_into_dataclasses() | |
logger_setting(getattr(training_arguments, 'output_dir', None)) | |
training_recipe = TrainingRecipeFactory(training_arguments.training_recipe)(training_arguments) | |
load_settings(model_arguments, data_arguments, training_arguments) | |
# load pretrained checkpoint | |
model = AutoModelForCausalLM.from_pretrained(training_arguments.pretrained_model_path, trust_remote_code=True) | |
config = model.config | |
tokenizer = AutoTokenizer.from_pretrained(training_arguments.pretrained_model_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side) | |
model.tokenizer = tokenizer | |
model = training_recipe(model) | |
model.config.use_cache = False | |
model.config.image_aspect_ratio = data_arguments.image_aspect_ratio | |
data_arguments.image_processor = AutoImageProcessor.from_pretrained(config.vision_model_name_or_path) | |
data_arguments.is_multimodal = True | |
data_module = make_supervised_data_module(tokenizer=tokenizer, | |
data_args=data_arguments) | |
log_trainable_params(model) # not work well with zero3 | |
trainer = LLaVATrainer(model=model, #does not require model.to(device), huggingface/deepspeed does it for you? | |
tokenizer=tokenizer, | |
args=training_arguments, | |
**data_module) | |
trainer.train() | |
training_recipe.save(model, trainer) | |
if __name__ == "__main__": | |
train() | |