Spaces:
Runtime error
Runtime error
from packaging import version | |
import pathlib | |
import tokenizers | |
import transformers | |
from tinyllava.train.tinyllava_trainer import LLaVATrainer | |
from tinyllava.training_recipe import TrainingRecipeFactory | |
from tinyllava.utils import * | |
from tinyllava.model import * | |
from tinyllava.data.dataset import make_supervised_data_module | |
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse('0.14') | |
def load_settings(model_arguments, data_arguments, training_arguments): | |
model_arguments.tune_type_connector = training_arguments.tune_type_connector | |
model_arguments.tune_type_llm = training_arguments.tune_type_llm | |
model_arguments.tune_type_vision_tower = training_arguments.tune_type_vision_tower | |
model_arguments.image_aspect_ratio = data_arguments.image_aspect_ratio | |
model_args = {} | |
model_args['llm'] = _load_llm_settings(model_arguments) | |
model_args['vision_tower'] = _load_vision_settings(model_arguments) | |
model_args['connector'] = _load_connector_settings(model_arguments) | |
return model_args | |
def _load_llm_settings(model_arguments): | |
llm_args = {} | |
llm_args['model_name_or_path'] = model_arguments.model_name_or_path | |
llm_args['cache_dir'] = model_arguments.cache_dir | |
llm_args['attn_implementation'] = model_arguments.attn_implementation # flash_attention_2 only supports torch.float16 and torch.bfloat16 dtypes | |
return llm_args | |
def _load_vision_settings(model_arguments): | |
vision_args = {} | |
vision_args['model_name_or_path'] = model_arguments.vision_tower.split(':')[-1] | |
if model_arguments.vision_tower2 != '': | |
vision_args['model_name_or_path2'] = model_arguments.vision_tower2.split(':')[-1] | |
return vision_args | |
def _load_connector_settings(model_arguments): | |
connector_args = {} | |
connector_args['connector_type'] = model_arguments.connector_type | |
return connector_args | |
def train(): | |
# load argument | |
parser = transformers.HfArgumentParser( | |
(ModelArguments, DataArguments, TrainingArguments)) | |
model_arguments, data_arguments, training_arguments = parser.parse_args_into_dataclasses() | |
logger_setting(getattr(training_arguments, 'output_dir', None)) | |
training_recipe = TrainingRecipeFactory(training_arguments.training_recipe)(training_arguments) | |
# model_args contain arguements for huggingface model .from_pretrained function | |
model_args = load_settings(model_arguments, data_arguments, training_arguments) | |
model_args = training_recipe.add_args(model_args) | |
model_config = TinyLlavaConfig() | |
model_config.load_from_config(model_arguments) | |
model = TinyLlavaForConditionalGeneration(model_config) | |
# load pretrained checkpoint | |
if training_arguments.pretrained_model_path is not None: | |
model = training_recipe.load(model, model_args) | |
else: | |
model.load_llm(**model_args['llm']) | |
model.load_vision_tower(**model_args['vision_tower']) | |
model.load_connector(**model_args['connector']) | |
model = training_recipe(model) | |
model.config.use_cache = False | |
model.config.image_aspect_ratio = data_arguments.image_aspect_ratio | |
tokenizer = model.tokenizer | |
data_arguments.image_processor = model.vision_tower._image_processor | |
data_arguments.is_multimodal = True | |
data_module = make_supervised_data_module(tokenizer=tokenizer, | |
data_args=data_arguments) | |
log_trainable_params(model) # not work well with zero3 | |
trainer = LLaVATrainer(model=model, #does not require model.to(device), huggingface/deepspeed does it for you? | |
tokenizer=tokenizer, | |
args=training_arguments, | |
**data_module) | |
trainer.train() | |
training_recipe.save(model, trainer) | |
if __name__ == "__main__": | |
train() | |