Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from ..utils import * | |
from ..model import * | |
class BaseTrainingRecipe: | |
def __init__(self, training_arguments): | |
self.training_arguments = training_arguments | |
def __call__(self, model): | |
model = self.training_model_converse(model) | |
model = self.tune_type_setting(model) | |
model.config.tune_type_connector = self.training_arguments.tune_type_connector | |
model.config.tune_type_vision_tower = self.training_arguments.tune_type_vision_tower | |
model.config.tune_type_llm = self.training_arguments.tune_type_llm | |
model.config.tune_vision_tower_from_layer = self.training_arguments.tune_vision_tower_from_layer | |
return model | |
def add_args(self, model_args): | |
llm_dtype = (torch.float16 if self.training_arguments.fp16 else (torch.bfloat16 if self.training_arguments.bf16 else torch.float32)) | |
model_args['llm'].update(dict(torch_dtype=llm_dtype)) | |
if self.training_arguments.pretrained_model_path is not None: | |
model_args['llm'].update(dict(pretrained_llm_path=os.path.join(self.training_arguments.pretrained_model_path, 'language_model'))) | |
model_args['vision_tower'].update(dict(pretrained_vision_tower_path=os.path.join(self.training_arguments.pretrained_model_path, 'vision_tower'))) | |
model_args['connector'].update(dict(pretrained_connector_path=os.path.join(self.training_arguments.pretrained_model_path, 'connector'))) | |
return model_args | |
def tune_type_setting(self, model): | |
model = self._llm_tune_type_setting(model) | |
model = self._vision_tower_tune_type_setting(model) | |
model = self._connector_tune_type_setting(model) | |
return model | |
def _llm_tune_type_setting(self, model): | |
tune_type = self.training_arguments.tune_type_llm.lower() | |
assert tune_type in ('frozen', 'full', 'lora', 'qlora'), f'tune_type {tune_type} not supported in this training recipe!' | |
if tune_type == 'full': | |
model.language_model.requires_grad_(True) | |
elif tune_type == 'frozen': | |
model.language_model.requires_grad_(False) | |
self.support_gradient_checkpoint(model.language_model, self.training_arguments.gradient_checkpointing) | |
return model | |
def _vision_tower_tune_type_setting(self, model): | |
tune_type = self.training_arguments.tune_type_vision_tower.lower() | |
assert tune_type in ('frozen', 'full', 'partially-tune', 'lora', 'qlora'), f'tune_type {tune_type} not supported in this training recipe!' | |
if tune_type == 'full': | |
model.vision_tower.requires_grad_(True) | |
elif tune_type == 'frozen': | |
model.vision_tower.requires_grad_(False) | |
elif tune_type == 'partially-tune': | |
#-------------------------------------------- | |
#-------------------------------------------- | |
#TODO gradient checkpointing related??? | |
#-------------------------------------------- | |
#-------------------------------------------- | |
from_layer = self.training_arguments.tune_vision_tower_from_layer | |
if from_layer > -1: | |
log(f'Tune the vision tower from layer {from_layer}!') | |
for n, p in model.vision_tower.named_parameters(): | |
if 'vision_model.encoder.layers.' in n: #TODO not sure if other visual encoders contain 'vision_model.encoder.layers.' | |
layer_id = int(n.split('vision_model.encoder.layers.')[-1].split('.')[0]) | |
if layer_id >= from_layer: | |
p.requires_grad = True | |
else: | |
p.requires_grad = False | |
else: | |
p.requires_grad = False | |
#self.support_gradient_checkpoint(model.vision_tower._vision_tower, self.training_arguments.gradient_checkpointing) | |
return model | |
def _connector_tune_type_setting(self, model): | |
tune_type = self.training_arguments.tune_type_connector.lower() | |
assert tune_type in ('frozen', 'full', 'lora', 'qlora'), f'tune_type {tune_type} not supported in this training recipe!' | |
if tune_type == 'full': | |
for p in model.connector.parameters(): | |
p.requires_grad = True | |
elif tune_type == 'frozen': | |
for p in model.connector.parameters(): | |
p.requires_grad = False | |
return model | |
def training_model_converse(self, model): | |
return model | |
def save(self, model, trainer): | |
model.config.use_cache = True | |
#save tokenizer | |
model.tokenizer.save_pretrained(self.training_arguments.output_dir) | |
#save entire model config | |
model.config.save_pretrained(self.training_arguments.output_dir, from_pt=True) | |
#save trainer | |
trainer.save_state() | |
if 'finetune' in self.training_arguments.output_dir and self.training_arguments.pretrained_model_path is not None: # for finetune stage | |
if trainer.deepspeed: | |
torch.cuda.synchronize() | |
trainer.save_model(self.training_arguments.output_dir) | |
return | |
#the followings are for pretrain stage | |
#save language model | |
language_model_state_dict = get_state_maybe_zero_3(model.language_model.named_parameters(), [''], False) | |
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: | |
language_model_output_dir = os.path.join(self.training_arguments.output_dir, 'language_model') | |
os.makedirs(language_model_output_dir, exist_ok=True) | |
language_model_output_path = os.path.join(self.training_arguments.output_dir, 'language_model/pytorch_model.bin') | |
torch.save(language_model_state_dict, language_model_output_path) | |
model.config.text_config.save_pretrained(language_model_output_dir, from_pt=True) | |
#save vision tower | |
vision_tower_state_dict = get_state_maybe_zero_3(model.vision_tower._vision_tower.named_parameters(), [''], False) | |
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: | |
vision_tower_output_dir = os.path.join(self.training_arguments.output_dir, 'vision_tower') | |
os.makedirs(vision_tower_output_dir, exist_ok=True) | |
vision_tower_output_path = os.path.join(self.training_arguments.output_dir, 'vision_tower/pytorch_model.bin') | |
torch.save(vision_tower_state_dict, vision_tower_output_path) | |
if isinstance(model.vision_tower._vision_tower, PreTrainedModel): | |
model.vision_tower._vision_tower.config.save_pretrained(vision_tower_output_dir, from_pt=True) | |
#save connector | |
connector_state_dict = get_state_maybe_zero_3(model.connector.named_parameters(), [''], False) | |
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: | |
connector_output_dir = os.path.join(self.training_arguments.output_dir, 'connector') | |
os.makedirs(connector_output_dir, exist_ok=True) | |
connector_output_path = os.path.join(self.training_arguments.output_dir, 'connector/pytorch_model.bin') | |
torch.save(connector_state_dict, connector_output_path) | |
def load(self, model, model_args={}): | |
if not ('lora' in self.training_arguments.pretrained_model_path and os.path.exists(os.path.join(self.training_arguments.pretrained_model_path, 'adapter_config.json'))): # loading model for non-lora/non-qlora pretraining | |
model.load_llm(**model_args['llm']) | |
model.load_vision_tower(**model_args['vision_tower']) | |
model.load_connector(**model_args['connector']) | |
else: | |
model.language_model = model.language_model.from_pretrained(model_args['llm']['model_name_or_path'],attn_implementation='flash_attention_2',torch_dtype=model_args['llm']['torch_dtype']) | |
model.load_vision_tower(**model_args['vision_tower']) | |
model.load_connector(**model_args['connector']) | |
model.to(model_args['llm']['torch_dtype']) | |
from peft import PeftModel | |
print('Loading LoRA weights...') | |
model = PeftModel.from_pretrained(model, self.training_arguments.pretrained_model_path) | |
print('Merging LoRA weights...') | |
model = model.merge_and_unload() | |
print('Model is loaded...') | |
return model | |
def support_gradient_checkpoint(self, model, gradient_checkpointing=False): | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
if gradient_checkpointing: | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |