Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, field | |
from typing import Dict, Optional, Sequence, TYPE_CHECKING | |
import transformers | |
if TYPE_CHECKING: | |
import transformers | |
class ModelArguments: | |
cache_dir: Optional[str] = field(default=None) | |
model_name_or_path: Optional[str] = field(default="TinyLlama/TinyLlama-1.1B-Chat-v1.0") | |
tokenizer_name_or_path: Optional[str] = field(default=None) | |
attn_implementation: Optional[str] = field(default=None) | |
vision_tower: Optional[str] = field(default='') | |
vision_tower2: Optional[str] = field(default='') | |
connector_type: str = field(default='linear') | |
mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer | |
mm_patch_merge_type: Optional[str] = field(default='flat') | |
mm_vision_select_feature: Optional[str] = field(default="patch") | |
resampler_hidden_size: Optional[int] = field(default=768) | |
num_queries: Optional[int] = field(default=128) | |
num_resampler_layers: Optional[int] = field(default=3) | |
model_max_length: int = field( | |
default=512, | |
metadata={ | |
"help": | |
"Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
}, | |
) | |
tokenizer_use_fast: bool = field(default=False) | |
tokenizer_padding_side: str = field(default='right') | |
class DataArguments: | |
data_path: str = field(default=None, | |
metadata={"help": "Path to the training data."}) | |
lazy_preprocess: bool = False | |
is_multimodal: bool = True | |
image_folder: Optional[str] = field(default=None) | |
image_aspect_ratio: str = 'square' | |
conv_version: str = 'pretrain' | |
class TrainingArguments(transformers.TrainingArguments): | |
training_recipe: str = field(default='common') | |
tune_type_llm: str = field(default="frozen") # support only: frozen, full, lora, qlora_int4, qlora_int8 | |
tune_type_vision_tower: str = field(default="frozen") # support only: frozen, full, partially-tune | |
tune_vision_tower_from_layer: Optional[int] = field(default=10) | |
tune_type_connector: str = field(default="full") # support only: frozen, full | |
tune_embed_tokens: Optional[int] = field(default=False) | |
optim: str = field(default="adamw_torch") | |
remove_unused_columns: bool = field(default=False) | |
double_quant: bool = field( | |
default=True, | |
metadata={"help": "Compress the quantization statistics through double quantization."} | |
) | |
quant_type: str = field( | |
default="nf4", | |
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} | |
) | |
bits: int = field( | |
default=16, | |
metadata={"help": "How many bits to use."} | |
) | |
lora_r: int = 64 | |
lora_alpha: int = 16 | |
lora_dropout: float = 0.05 | |
lora_weight_path: str = "" | |
lora_bias: str = "none" | |
mm_projector_lr: Optional[float] = None | |
group_by_modality_length: bool = field(default=False) | |
vision_tower_lr: Optional[float] = None | |
pretrained_model_path: Optional[str] = field(default=None) | |