Spaces:
Runtime error
Runtime error
import logging | |
import os | |
import sys | |
import torch.distributed as dist | |
root_logger = None | |
def print_rank0(*args): | |
local_rank = dist.get_rank() | |
if local_rank == 0: | |
print(*args) | |
def logger_setting(save_dir=None): | |
global root_logger | |
if root_logger is not None: | |
return root_logger | |
else: | |
root_logger = logging.getLogger() | |
root_logger.setLevel(logging.INFO) | |
ch = logging.StreamHandler(stream=sys.stdout) | |
ch.setLevel(logging.INFO) | |
formatter = logging.Formatter("%(asctime)s | %(levelname)s: %(message)s") | |
ch.setFormatter(formatter) | |
root_logger.addHandler(ch) | |
if save_dir: | |
if not os.path.exists(save_dir): | |
os.makedirs(save_dir, exist_ok=True) | |
save_file = os.path.join(save_dir, 'log.txt') | |
if not os.path.exists(save_file): | |
os.system(f"touch {save_file}") | |
fh = logging.FileHandler(save_file, mode='a') | |
fh.setLevel(logging.INFO) | |
fh.setFormatter(formatter) | |
root_logger.addHandler(fh) | |
return root_logger | |
def log(*args): | |
global root_logger | |
local_rank = dist.get_rank() | |
if local_rank == 0: | |
root_logger.info(*args) | |
def log_trainable_params(model): | |
total_params = sum(p.numel() for p in model.parameters()) | |
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
log(f'Total Parameters: {total_params}, Total Trainable Parameters: {total_trainable_params}') | |
log(f'Trainable Parameters:') | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
print_rank0(f"{name}: {param.numel()} parameters") | |