Spaces:
Runtime error
Runtime error
import logging | |
import os | |
import torch | |
from peft.tuners.lora import LoraLayer | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
def lora_kbit_setting(model, training_args): | |
for name, module in model.named_modules(): | |
if isinstance(module, LoraLayer): | |
if training_args.bf16: | |
module = module.to(torch.bfloat16) | |
if 'norm' in name: | |
module = module.to(torch.float32) | |
if 'lm_head' in name or 'embed_tokens' in name: | |
if hasattr(module, 'weight'): | |
if training_args.bf16 and module.weight.dtype == torch.float32: | |
module = module.to(torch.bfloat16) | |
def maybe_zero_3(param, ignore_status=False, name=None): | |
if hasattr(param, "ds_id"): | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if not ignore_status: | |
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") | |
with zero.GatheredParameters([param]): | |
param = param.data.detach().cpu().clone() | |
else: | |
param = param.detach().cpu().clone() | |
return param | |
# Borrowed from peft.utils.get_peft_model_state_dict | |
def get_peft_state_maybe_zero_3(named_params, bias): | |
if bias == "none": | |
to_return = {k: t for k, t in named_params if "lora_" in k} | |
elif bias == "all": | |
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
elif bias == "lora_only": | |
to_return = {} | |
maybe_lora_bias = {} | |
lora_bias_names = set() | |
for k, t in named_params: | |
if "lora_" in k: | |
to_return[k] = t | |
bias_name = k.split("lora_")[0] + "bias" | |
lora_bias_names.add(bias_name) | |
elif "bias" in k: | |
maybe_lora_bias[k] = t | |
for k, t in maybe_lora_bias: | |
if bias_name in lora_bias_names: | |
to_return[bias_name] = t | |
else: | |
raise NotImplementedError | |
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} | |
return to_return | |
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): | |
to_return = {k: t for k, t in named_params if "lora_" not in k} | |
if require_grad_only: | |
to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def get_state_maybe_zero_3(named_params, keys_to_match=[''], require_grad_only=True): | |
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} | |
if require_grad_only: | |
to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def find_all_linear_names(model, skip_keywords=['connector', 'vision_tower']): | |
cls = torch.nn.Linear | |
lora_module_names = set() | |
skip_keywords = skip_keywords | |
for name, module in model.named_modules(): | |
if any(skip_keyword in name for skip_keyword in skip_keywords) or 'lm_head' in name or 'output_layer' in name or 'head' in name: | |
continue | |
if isinstance(module, cls): | |
names = name.split('.') | |
#lora_module_names.add(names[0] if len(names) == 1 else names[-1]) | |
lora_module_names.add(name) | |
# if 'lm_head' in lora_module_names: | |
# lora_module_names.remove('lm_head') | |
return list(lora_module_names) | |